The Ehrenfest paradox concerns the rotation of a "rigid" disc in the theory of relativity.
In its original 1909 formulation as presented by Paul Ehrenfest in relation to the concept of Born rigidity within special relativity, [1] it discusses an ideally rigid cylinder that is made to rotate about its axis of symmetry. [2] The radius R as seen in the laboratory frame is always perpendicular to its motion and should therefore be equal to its value R0 when stationary. However, the circumference (2πR) should appear Lorentz-contracted to a smaller value than at rest, by the usual factor γ. This leads to the contradiction that R = R0andR < R0. [3]
The paradox has been deepened further by Albert Einstein, who showed that since measuring rods aligned along the periphery and moving with it should appear contracted, more would fit around the circumference, which would thus measure greater than 2πR. This indicates that geometry is non-Euclidean for rotating observers, and was important for Einstein's development of general relativity. [4]
Any rigid object made from real material that is rotating with a transverse velocity close to that material's speed of sound must exceed the point of rupture due to centrifugal force, because centrifugal pressure can not exceed the shear modulus of material.
where is speed of sound, is density and is shear modulus. Therefore, when considering relativistic speeds, it is only a thought experiment. Neutron-degenerate matter may allow velocities close to the speed of light, since the speed of a neutron-star oscillation is relativistic (though these bodies cannot strictly be said to be "rigid").
Imagine a disk of radius R rotating with constant angular velocity .
The reference frame is fixed to the stationary center of the disk. Then the magnitude of the relative velocity of any point in the circumference of the disk is . So the circumference will undergo Lorentz contraction by a factor of .
However, since the radius is perpendicular to the direction of motion, it will not undergo any contraction. So
This is paradoxical, since in accordance with Euclidean geometry, it should be exactly equal to π.
Ehrenfest considered an ideal Born-rigid cylinder that is made to rotate. Assuming that the cylinder does not expand or contract, its radius stays the same. But measuring rods laid out along the circumference should be Lorentz-contracted to a smaller value than at rest, by the usual factor γ. This leads to the paradox that the rigid measuring rods would have to separate from one another due to Lorentz contraction; the discrepancy noted by Ehrenfest seems to suggest that a rotated Born rigid disk should shatter.
Thus Ehrenfest argued by reductio ad absurdum that Born rigidity is not generally compatible with special relativity. According to special relativity an object cannot be spun up from a non-rotating state while maintaining Born rigidity, but once it has achieved a constant nonzero angular velocity it does maintain Born rigidity without violating special relativity, and then (as Einstein later showed) a disk-riding observer will measure a circumference: [3]
The rotating disc and its connection with rigidity was also an important thought experiment for Albert Einstein in developing general relativity. [4] He referred to it in several publications in 1912, 1916, 1917, 1922 and drew the insight from it, that the geometry of the disc becomes non-Euclidean for a co-rotating observer. Einstein wrote (1922): [5]
66ff: Imagine a circle drawn about the origin in the x'y' plane of K' and a diameter of this circle. Imagine, further, that we have given a large number of rigid rods, all equal to each other. We suppose these laid in series along the periphery and the diameter of the circle, at rest relatively to K'. If U is the number of these rods along the periphery, D the number along the diameter, then, if K' does not rotate relatively to K, we shall have . But if K' rotates we get a different result. Suppose that at a definite time t of K we determine the ends of all the rods. With respect to K all the rods upon the periphery experience the Lorentz contraction, but the rods upon the diameter do not experience this contraction (along their lengths!). It therefore follows that .
It therefore follows that the laws of configuration of rigid bodies with respect to K' do not agree with the laws of configuration of rigid bodies that are in accordance with Euclidean geometry. If, further, we place two similar clocks (rotating with K'), one upon the periphery, and the other at the centre of the circle, then, judged from K, the clock on the periphery will go slower than the clock at the centre. The same thing must take place, judged from K' if we define time with respect to K' in a not wholly unnatural way, that is, in such a way that the laws with respect to K' depend explicitly upon the time. Space and time, therefore, cannot be defined with respect to K' as they were in the special theory of relativity with respect to inertial systems. But, according to the principle of equivalence, K' is also to be considered as a system at rest, with respect to which there is a gravitational field (field of centrifugal force, and force of Coriolis). We therefore arrive at the result: the gravitational field influences and even determines the metrical laws of the space-time continuum. If the laws of configuration of ideal rigid bodies are to be expressed geometrically, then in the presence of a gravitational field the geometry is not Euclidean.
Citations to the papers mentioned below (and many which are not) can be found in a paper by Øyvind Grøn which is available on-line. [3]
Grøn states that the resolution of the paradox stems from the impossibility of synchronizing clocks in a rotating reference frame. [16] If observers on the rotating circumference try to synchronise their clocks around the circumference to establish disc time, there is a time difference between the two end points where they meet.
The modern resolution can be briefly summarized as follows:
Some other "paradoxes" in special relativity
In classical physics and special relativity, an inertial frame of reference is a frame of reference not undergoing any acceleration. It is a frame in which an isolated physical object—an object with zero net force acting on it—is perceived to move with a constant velocity or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration. It has been observed that celestial objects which are far away from other objects and which are in uniform motion with respect to the cosmic microwave background radiation maintain such uniform motion.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:
In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.
In physics, the twin paradox is a thought experiment in special relativity involving identical twins, one of whom makes a journey into space in a high-speed rocket and returns home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin sees the other twin as moving, and so, as a consequence of an incorrect and naive application of time dilation and the principle of relativity, each should paradoxically find the other to have aged less. However, this scenario can be resolved within the standard framework of special relativity: the travelling twin's trajectory involves two different inertial frames, one for the outbound journey and one for the inbound journey. Another way of looking at it is to realize the travelling twin is undergoing acceleration, which makes them a non-inertial observer. In both views there is no symmetry between the spacetime paths of the twins. Therefore, the twin paradox is not actually a paradox in the sense of a logical contradiction. There is still debate as to the resolution of the twin paradox.
The Trouton–Noble experiment was an attempt to detect motion of the Earth through the luminiferous aether, and was conducted in 1901–1903 by Frederick Thomas Trouton and H. R. Noble. It was based on a suggestion by George FitzGerald that a charged parallel-plate capacitor moving through the aether should orient itself perpendicular to the motion. Like the earlier Michelson–Morley experiment, Trouton and Noble obtained a null result: no motion relative to the aether could be detected. This null result was reproduced, with increasing sensitivity, by Rudolf Tomaschek, Chase and Hayden in 1994. Such experimental results are now seen, consistent with special relativity, to reflect the validity of the principle of relativity and the absence of any absolute rest frame. The experiment is a test of special relativity.
Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald contraction and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
The ladder paradox is a thought experiment in special relativity. It involves a ladder, parallel to the ground, travelling horizontally at relativistic speed and therefore undergoing a Lorentz length contraction. The ladder is imagined passing through the open front and rear doors of a garage or barn which is shorter than its rest length, so if the ladder was not moving it would not be able to fit inside. To a stationary observer, due to the contraction, the moving ladder is able to fit entirely inside the building as it passes through. On the other hand, from the point of view of an observer moving with the ladder, the ladder will not be contracted, and it is the building which will be Lorentz contracted to an even smaller length. Therefore, the ladder will not be able to fit inside the building as it passes through. This poses an apparent discrepancy between the realities of both observers.
Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration and Proper reference frame.
In relativistic physics, Supplee's paradox is a physical paradox that arises when considering the buoyant force exerted on a relativistic bullet immersed in a fluid subject to an ambient gravitational field. If a bullet has neutral buoyancy when it is at rest in a perfect fluid and then it is launched with a relativistic speed, observers at rest within the fluid would conclude that the bullet should sink, since its density will increase due to the length contraction effect. On the other hand, in the bullet's proper frame it is the moving fluid that becomes denser and hence the bullet would float. But the bullet cannot sink in one frame and float in another, so there is a paradox situation.
The Sagnac effect, also called Sagnac interference, named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is elicited by rotation. The Sagnac effect manifests itself in a setup called a ring interferometer or Sagnac interferometer. A beam of light is split and the two beams are made to follow the same path but in opposite directions. On return to the point of entry the two light beams are allowed to exit the ring and undergo interference. The relative phases of the two exiting beams, and thus the position of the interference fringes, are shifted according to the angular velocity of the apparatus. In other words, when the interferometer is at rest with respect to a nonrotating frame, the light takes the same amount of time to traverse the ring in either direction. However, when the interferometer system is spun, one beam of light has a longer path to travel than the other in order to complete one circuit of the mechanical frame, and so takes longer, resulting in a phase difference between the two beams. Georges Sagnac set up this experiment in 1913 in an attempt to prove the existence of the aether that Einstein's theory of special relativity makes superfluous.
The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.
Bell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 but became more widely known after John Stewart Bell elaborated the idea further in 1976. A delicate thread hangs between two spaceships headed in the same direction. They start accelerating simultaneously and equally as measured in the inertial frame S, thus having the same velocity at all times as viewed from S. Therefore, they are all subject to the same Lorentz contraction, so the entire assembly seems to be equally contracted in the S frame with respect to the length at the start. At first sight, it might appear that the thread will not break during acceleration.
Born rigidity is a concept in special relativity. It is one answer to the question of what, in special relativity, corresponds to the rigid body of non-relativistic classical mechanics.
In relativistic physics, the Born coordinate chart is a coordinate chart for Minkowski spacetime, the flat spacetime of special relativity. It is often used to analyze the physical experience of observers who ride on a ring or disk rigidly rotating at relativistic speeds, so called Langevin observers. This chart is often attributed to Max Born, due to his 1909 work on the relativistic physics of a rotating body. For overview of the application of accelerations in flat spacetime, see Acceleration and proper reference frame.
Vladimir Varićak was a Croatian Serb mathematician and theoretical physicist.
The theory of special relativity was initially developed in 1905 by Albert Einstein. Moving beyond the traditional formulation, newer interpretations of special relativity have been developed on the basis of different foundational axioms. While some are mathematically equivalent to Einstein's theory, others aim to revise or extend it.
Øyvind Grøn is a Norwegian physicist.
Criticism of the theory of relativity of Albert Einstein was mainly expressed in the early years after its publication in the early twentieth century, on scientific, pseudoscientific, philosophical, or ideological bases. Though some of these criticisms had the support of reputable scientists, Einstein's theory of relativity is now accepted by the scientific community.
This timeline describes the major developments, both experimental and theoretical, of: