Einstein Cross

Last updated
Einstein Cross
Einstein cross.jpg
Observation data (Epoch J2000)
Constellation Pegasus
Right ascension 22h 40m 30.3s
Declination +3° 21 31
Redshift 1.695
Distance 8,000,000,000 ly (2,500,000,000 pc)
Type LeQ
Apparent dimensions (V)less than 2"
Apparent magnitude  (V)16.78
Other designations
LEDA 69457, Z 378-15
See also: Quasar, List of quasars

The Einstein Cross (Q2237+030 or QSO 2237+0305) is a gravitationally lensed quasar that sits directly behind the centre of the galaxy ZW 2237+030, called Huchra's Lens. Four images of the same distant quasar (plus one in the centre, too dim to see) appear in the middle of the foreground galaxy due to strong gravitational lensing. [1] [2] This system was discovered by John Huchra and coworkers in 1985, although at the time they only detected that there was a quasar behind a galaxy based on differing redshifts and did not resolve the four separate images of the quasar. [3]

Contents

While gravitationally lensed light sources are often shaped into an Einstein ring, due to the elongated shape of the lensing galaxy and the quasar being off-centre, the images form a peculiar cross-shape instead. [4]

Other "Einstein crosses" have been discovered [5] (see image below of one of them).

Details

The quasar's redshift indicates that it is located about 8 billion light years from Earth, while the lensing galaxy is at a distance of 400 million light years. The apparent dimensions of the entire foreground galaxy are 0.87 × 0.34 arcminutes, [6] while the apparent dimension of the cross in its centre accounts for only 1.6 × 1.6 arcseconds.

The Einstein Cross can be found in Pegasus at 22h 40m 30.3s, +3° 21 31.

Amateur astronomers are able to see some of the cross using telescopes; however, it requires extremely dark skies and telescope mirrors with diameters of 18 inches (46 cm) or greater. [7]

The individual images are labelled A through D (i.e. QSO 2237+0305 A), the lensing galaxy is sometimes referred to as QSO 2237+0305 G.

See also

Related Research Articles

<span class="mw-page-title-main">Quasar</span> Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

<span class="mw-page-title-main">Gravitational lens</span> Light bending by mass between source and observer

A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's general theory of relativity with much greater accuracy than Newtonian physics, which treats light as corpuscles travelling at the speed of light.

<span class="mw-page-title-main">Galaxy cluster</span> Structure made up of a gravitationally-bound aggregation of hundreds of galaxies

A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-largest known gravitationally bound structures in the universe after some superclusters (of which only one, the Shapley Supercluster, is known to be bound). They were believed to be the largest known structures in the universe until the 1980s, when superclusters were discovered. One of the key features of clusters is the intracluster medium (ICM). The ICM consists of heated gas between the galaxies and has a peak temperature between 2–15 keV that is dependent on the total mass of the cluster. Galaxy clusters should not be confused with galactic clusters (also known as open clusters), which are star clusters within galaxies, or with globular clusters, which typically orbit galaxies. Small aggregates of galaxies are referred to as galaxy groups rather than clusters of galaxies. The galaxy groups and clusters can themselves cluster together to form superclusters.

<span class="mw-page-title-main">Einstein ring</span> Feature seen when light is gravitationally lensed by an object

An Einstein ring, also known as an Einstein–Chwolson ring or Chwolson ring, is created when light from a galaxy or star passes by a massive object en route to the Earth. Due to gravitational lensing, the light is diverted, making it seem to come from different places. If source, lens, and observer are all in perfect alignment (syzygy), the light appears as a ring.

<span class="mw-page-title-main">Halton Arp</span> American astronomer

Halton Christian "Chip" Arp was an American astronomer. He was known for his 1966 book Atlas of Peculiar Galaxies, which documented peculiarities among galaxies.

<span class="mw-page-title-main">Twin Quasar</span> Gravitationally lensed quasar

The Twin Quasar, was discovered in 1979 and was the first identified gravitationally lensed object, not to be confused with the first detection of light deflection in 1919. It is a quasar that appears as two images, a result from gravitational lensing caused by the galaxy YGKOW G1 that is located directly between Earth and the quasar.

Huchra's lens is the lensing galaxy of the Einstein Cross ; it is also called ZW 2237+030 or QSO 2237+0305 G. It exhibits the phenomenon of gravitational lensing that was postulated by Albert Einstein when he realized that gravity would be able to bend light and thus could have lens-like effects. The galaxy is named for astronomer John Huchra, a key member of the team that discovered it.

<span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

John Peter Huchra was an American astronomer and professor. He was the Vice Provost for Research Policy at Harvard University and a Professor of Astronomy at the Center for Astrophysics | Harvard & Smithsonian. He was also a former chair of the United States National Committee for the International Astronomical Union. and past president of the American Astronomical Society.

A gravitational mirage or cosmic mirage is an optical phenomenon affecting the appearance of a distant star or galaxy, seen only through a telescope. It can take the form of a ring or rings partially or completely surrounding the object, a duplicate image adjacent to the object, or multiple duplicate images surrounding the object. Sometimes the direct view of the original object itself is dimmed or absent.

<span class="mw-page-title-main">APM 08279+5255</span> Quasar

APM 08279+5255 is a very distant, broad absorption line quasar located in the constellation Lynx. It is magnified and split into multiple images by the gravitational lensing effect of a foreground galaxy through which its light passes. It appears to be a giant elliptical galaxy with a supermassive black hole and associated accretion disk. It possesses large regions of hot dust and molecular gas, as well as regions with starburst activity.

<span class="mw-page-title-main">CL1358+62</span> Galaxy cluster in the constellation Draco

CL 1358+62 is a galaxy cluster located at z=0.33 redshift. Behind the cluster, lensed into a red arc is an infant galaxy that was the farthest object in the observable universe for a few months. It had a record redshift of z=4.92 and was discovered on July 31, 1997 by M. Franx and G. Illingsworth. It is located approximately 26 billion light years from Earth. Its redshift was measured by the Keck Telescope shortly after its discovery. Along with G1, another galaxy also lensed, was found to be at z=4.92. The pair of galaxies were the first things other than quasars to have the title of most distant object found, since the 1960s. The pair of galaxies remained the most distant objects known until the discovery of RD1 at z=5.34, the first object to exceed redshift 5.

CLASS B1359+154 is a quasar, or quasi-stellar object, that has a redshift of 3.235. A group of three foreground galaxies at a redshift of about 1 are behaving as gravitational lenses. The result is a rare example of a sixfold multiply imaged quasar.

<span class="mw-page-title-main">Strong gravitational lensing</span>

Strong gravitational lensing is a gravitational lensing effect that is strong enough to produce multiple images, arcs, or even Einstein rings. Generally, for strong lensing to occur, the projected lens mass density must be greater than the critical density, that is . For point-like background sources, there will be multiple images; for extended background emissions, there can be arcs or rings. Topologically, multiple image production is governed by the odd number theorem.

The Cloverleaf quasar is a bright, gravitationally lensed quasar.

<span class="mw-page-title-main">J1000+0221</span>

J1000+0221 was the most distant gravitational lens galaxy known, and remains the most distant quad-image lens galaxy discovered so far. The measured distance the light has traveled, including the lensed deflection, is 9.4 billion light years. A very recent discovery by a group of astronomers led by Dr Arjen Van der Wel from the Max Planck Institute for Astronomy in Heidelberg, Germany, the results of which are accepted for publication on October 21, 2013 in the Astrophysical Journal Letters (arXiv.org). Using NASA’s Hubble Space Telescope, the astronomers discovered this quadruple gravitational lens dubbed J1000+0221 which would provide a further test for Einstein's theory of general relativity. These gravitational lenses also serve as light magnification tools that help astronomers to look at distant galaxies thus acting as a natural telescope.

<span class="mw-page-title-main">IRC 0218</span> Galaxy cluster in the constellation Cetus

The galaxy cluster IRC 0218 hosts the most distant strong gravitational lensing galaxy currently known at a redshift of z = 1.62. The lens is one of the two brightest cluster galaxies and is lensing a background star-forming galaxy at a redshift of z = 2.26 into a bright arc and a faint counterimage. The lens was discovered through a combination of Hubble Space Telescope and Keck telescope imaging and spectroscopy. The discovery and subsequent analysis of the lens was published in the Astrophysical Journal Letters on June 23, 2014 by an international team of astronomers led by Dr. Kim-Vy Tran from Texas A&M University in College Station, Texas and team members Dr. Kenneth Wong and Dr. Sherry Suyu from the Academia Sinica Institute of Astronomy and Astrophysics in Taipei, Taiwan.

<span class="mw-page-title-main">Georges Meylan</span> Swiss astronomer

Georges Meylan is a Swiss astronomer, born on July 31, 1950, in Lausanne, Switzerland. He was the director of the Laboratory of Astrophysics of the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland, and now a professor emeritus of astrophysics and cosmology at EPFL. He is still active in both research and teaching.

<span class="mw-page-title-main">MACS J1149 Lensed Star 1</span> Blue supergiant and second most distant star from earth detected in the constellation Leo

MACS J1149 Lensed Star 1, also known as Icarus, is a blue supergiant star observed through a gravitational lens. It is the seventh most distant individual star to have been detected so far, at approximately 14 billion light-years from Earth. Light from the star was emitted 4.4 billion years after the Big Bang. According to co-discoverer Patrick Kelly, the star is at least a hundred times more distant than the next-farthest non-supernova star observed, SDSS J1229+1122, and is the first magnified individual star seen.

References

  1. NASA and ESA (September 13, 1990). "The Gravitational Lens G2237 + 0305". HubbleSite. Archived from the original on 19 December 2005. Retrieved July 25, 2006.
  2. Drakeford, Jason; Corum, Jonathan; Overbye, Dennis (March 5, 2015). "Einstein's Telescope - video (02:32)". The New York Times . Retrieved December 27, 2015.
  3. Huchra, J.; et al. (1985). "2237 + 0305: A new and unusual gravitational lens". Astronomical Journal . 90: 691–696. Bibcode:1985AJ.....90..691H. doi: 10.1086/113777 .
  4. "How does gravitational lensing account for Einstein's Cross?". physics.stackexchange.com. Retrieved 2016-06-26.
  5. "A new Einstein cross is discovered". phys.org. Retrieved 2019-11-13.
  6. "LEDA 69457". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 12 February 2017.
  7. Crinklaw, Greg. "Focus on Einstein's Cross" . Retrieved 2013-06-29.
  8. "Cosmic lenses support finding on faster than expected expansion of the Universe". www.spacetelescope.org. Retrieved 27 January 2017.