SN Refsdal

Last updated
SN Refsdal
The past, present and future appearances of the Refsdal supernova.jpg
SN Refsdal (inset picture) and galaxy cluster MACS J1149.6+2223.
Event type Supernova   OOjs UI icon edit-ltr-progressive.svg
Unknown
Date11 November 2014
Patrick Kelly (GLASS)
Constellation Leo
Right ascension 11h 49m 35.45s [1]
Declination 22° 23 44.84 [1]
Epoch J2000
Distancez=1.49 [1]
Progenitorunknown
Notable featuresFirst multiply-lensed supernova
  Commons-logo.svg Related media on Commons

SN Refsdal is the first detected multiply-lensed supernova, visible within the field of the galaxy cluster MACS J1149+2223. It was named after Norwegian astrophysicist Sjur Refsdal, who, in 1964, first proposed using time-delayed images from a lensed supernova to study the expansion of the universe. [1] [2] [3] The observations were made using the Hubble Space Telescope. [4]

Contents

Einstein cross

The host galaxy of SN Refsdal is at a redshift of 1.49, corresponding to a comoving distance of 14.4 billion light-years and a lookback time of 9.34 billion years. [5] The multiple images are arranged around the elliptical galaxy at z = 0.54 in a cross-shaped pattern, also known as an "Einstein cross". [1]

Reappearance

The image to the left shows a part of the deep field observation of the galaxy cluster MACS J1149.5+2223 from the Frontier Fields programme. The circle indicates the predicted position of the newest appearance of the supernova. To the lower right the Einstein cross event from late 2014 is visible. The image on the top right shows observations by Hubble from October 2015, taken at the beginning of the observation programme to detect the newest appearance of the supernova. The image on the lower right shows the discovery of the supernova on 11 December 2015, as predicted by several different models. Heic1525a.jpg
The image to the left shows a part of the deep field observation of the galaxy cluster MACS J1149.5+2223 from the Frontier Fields programme. The circle indicates the predicted position of the newest appearance of the supernova. To the lower right the Einstein cross event from late 2014 is visible. The image on the top right shows observations by Hubble from October 2015, taken at the beginning of the observation programme to detect the newest appearance of the supernova. The image on the lower right shows the discovery of the supernova on 11 December 2015, as predicted by several different models.

After the discovery of the supernova, astronomers predicted that they would be able to see it again in about one year, after the four images had faded away. This is because the initially observed four-image pattern was only one component of the lensing display. The supernova may also have appeared as a single image some 40–50 years ago elsewhere in the cluster field. [1]

The supernova reappeared at the predicted position between mid-November 2015 and December 11, 2015 [6] (with the exact date being uncertain by approximately one month which is the interval between two consecutive Hubble observations), [7] in excellent agreement with the blind model predictions made before the reappearance was observed. [8] [9] [10] The time delay between the original quadruplet observed in 2014 and the latest appearance of the supernova in 2015 was used to infer the value of the Hubble constant. This is the first time this technique, originally suggested by Refsdal, has been applied to supernovae. [11]

Using measurements from SN Refsdal and galaxy cluster lens models, astronomers find that the Hubble constant has value H0 = 66.6+4.1
−3.3
km s−1 Mpc−1. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Gravitational lens</span> Light bending by mass between source and observer

A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's general theory of relativity with much greater accuracy than Newtonian physics, which treats light as corpuscles travelling at the speed of light.

<span class="mw-page-title-main">Messier 82</span> Starburst galaxy the constellation Ursa Major

Messier 82 (also known as NGC 3034, Cigar Galaxy or M82) is a starburst galaxy approximately 12 million light-years away in the constellation Ursa Major. It is the second-largest member of the M81 Group, with the D25 isophotal diameter of 12.52 kiloparsecs (40,800 light-years). It is about five times more luminous than the Milky Way and its central region is about one hundred times more luminous. The starburst activity is thought to have been triggered by interaction with neighboring galaxy M81. As one of the closest starburst galaxies to Earth, M82 is the prototypical example of this galaxy type. SN 2014J, a type Ia supernova, was discovered in the galaxy on 21 January 2014. In 2014, in studying M82, scientists discovered the brightest pulsar yet known, designated M82 X-2.

<span class="mw-page-title-main">Pinwheel Galaxy</span> Galaxy in the constellation Ursa Major

The Pinwheel Galaxy is a face-on spiral galaxy 21 million light-years away from Earth in the constellation Ursa Major. It was discovered by Pierre Méchain in 1781 and was communicated that year to Charles Messier, who verified its position for inclusion in the Messier Catalogue as one of its final entries.

<span class="mw-page-title-main">Messier 61</span> Galaxy in the constellation Virgo

Messier 61 is an intermediate barred spiral galaxy in the Virgo Cluster of galaxies. It was first discovered by Barnaba Oriani on May 5, 1779, six days before Charles Messier discovered the same galaxy. Messier had observed it on the same night as Oriani but had mistaken it for a comet. Its distance has been estimated to be 45.61 million light years from the Milky Way Galaxy. It is a member of the M61 Group of galaxies, which is a member of the Virgo II Groups, a series of galaxies and galaxy clusters strung out from the southern edge of the Virgo Supercluster.

<span class="mw-page-title-main">Centaurus A</span> Radio galaxy in the constellation Centaurus

Centaurus A is a galaxy in the constellation of Centaurus. It was discovered in 1826 by Scottish astronomer James Dunlop from his home in Parramatta, in New South Wales, Australia. There is considerable debate in the literature regarding the galaxy's fundamental properties such as its Hubble type and distance. NGC 5128 is one of the closest radio galaxies to Earth, so its active galactic nucleus has been extensively studied by professional astronomers. The galaxy is also the fifth-brightest in the sky, making it an ideal amateur astronomy target. It is only visible from the southern hemisphere and low northern latitudes.

<span class="mw-page-title-main">Einstein ring</span> Feature seen when light is gravitationally lensed by an object

An Einstein ring, also known as an Einstein–Chwolson ring or Chwolson ring, is created when light from a galaxy or star passes by a massive object en route to the Earth. Due to gravitational lensing, the light is diverted, making it seem to come from different places. If source, lens, and observer are all in perfect alignment (syzygy), the light appears as a ring.

<span class="mw-page-title-main">Whirlpool Galaxy</span> Galaxy in the constellation Canes Venatici

The Whirlpool Galaxy, also known as Messier 51a (M51a) or NGC 5194, is an interacting grand-design spiral galaxy with a Seyfert 2 active galactic nucleus. It lies in the constellation Canes Venatici, and was the first galaxy to be classified as a spiral galaxy. It is 32 million light-years away and 109,000 ly (33,280 pc) in diameter.

<span class="mw-page-title-main">Messier 81</span> Spiral galaxy in the constellation Ursa Major

Messier 81 (also known as NGC 3031 or Bode's Galaxy) is a grand design spiral galaxy about 12 million light-years away in the constellation Ursa Major. It has a D25 isophotal diameter of 29.44 kiloparsecs (96,000 light-years). Because of its relative proximity to the Milky Way galaxy, large size, and active galactic nucleus (which harbors a 70 million M supermassive black hole), Messier 81 has been studied extensively by professional astronomers. The galaxy's large size and relatively high brightness also makes it a popular target for amateur astronomers. In late February 2022, astronomers reported that M81 may be the source of FRB 20200120E, a repeating fast radio burst.

<span class="mw-page-title-main">NGC 6946</span> Galaxy in the constellations Cepheus & Cygnus

NGC 6946, sometimes referred to as the Fireworks Galaxy, is a face-on intermediate spiral galaxy with a small bright nucleus, whose location in the sky straddles the boundary between the northern constellations of Cepheus and Cygnus. Its distance from Earth is about 25.2 million light-years or 7.72 megaparsecs, similar to the distance of M101 in the constellation Ursa Major. Both were once considered to be part of the Local Group, but are now known to be among the dozen bright spiral galaxies near the Milky Way but beyond the confines of the Local Group. NGC 6946 lies within the Virgo Supercluster.

<span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light. Gravitational microlensing was first theorised by Refstal (1964) and first discovered by Irwin et al (1988). The first object in the sky where it was discovered was the Einstein cross or Huchra lens 2237 +0305. The initial lightcurve of the object was published by Corrigan et al (1991). In Corrigan et al (1991) they calculated that the object causing the microlensing was a Jupiter sized object. This was the first discovery of a planet in another galaxy.

<span class="mw-page-title-main">Sjur Refsdal</span> Norwegian astrophysicist (1935–2009)

Sjur Refsdal was a Norwegian astrophysicist, born in Oslo. He is best known for his pioneer work on gravitational lensing, including the Chang-Refsdal lens.

<span class="mw-page-title-main">NGC 5584</span> Galaxy in the constellation Virgo

NGC 5584 is a barred spiral galaxy in the constellation Virgo. It was discovered July 27, 1881 by American astronomer E. E. Barnard. Distance determination using Cepheid variable measurements gives an estimate of 75 million light years, whereas the tip of the red-giant branch approach yields a distance of 73.4 million light years. It is receding with a heliocentric radial velocity of 1,637 km/s. It is a member of the Virgo III Groups, a series of galaxies and galaxy clusters strung out to the east of the Virgo Supercluster of galaxies.

<span class="mw-page-title-main">MACS0647-JD</span> The farthest known galaxy from the Earth in the constellation Camelopardalis

MACS0647-JD is a galaxy with a redshift of about z = 10.7, equivalent to a light travel distance of 13.26 billion light-years. If the distance estimate is correct, it formed about 427 million years after the Big Bang.

<span class="mw-page-title-main">Cluster Lensing and Supernova survey with Hubble</span>

The Cluster Lensing And Supernova survey with Hubble (CLASH) was a program on the Hubble Space Telescope to observe 25 massive galaxy clusters. CLASH was one of three programs selected in the first class of Hubble multi-cycle treasury programs, which were designed to tackle large questions unanswerable through normal observations. Observations for CLASH were conducted between November 2010 and July 2013. CLASH was led by principal investigator Marc Postman, and had a science team of over 40 researchers.

<span class="mw-page-title-main">SN 2014J</span> Supernova in Messier 82

SN 2014J was a type-Ia supernova in Messier 82 discovered in mid-January 2014. It was the closest type-Ia supernova discovered for 42 years, and no subsequent supernova has been closer as of 2023. The supernova was discovered by chance during an undergraduate teaching session at the University of London Observatory. It peaked on 31 January 2014, reaching an apparent magnitude of 10.5. SN 2014J was the subject of an intense observing campaign by professional astronomers and was bright enough to be seen by amateur astronomers.

<span class="mw-page-title-main">MACS J0416.1-2403</span> Galaxy cluster in the constellation Eridanus

MACS J0416.1-2403 or MACS0416 abbreviated, is a cluster of galaxies at a redshift of z=0.397 with a mass 160 trillion times the mass of the Sun inside 200 kpc (650 kly). Its mass extends out to a radius of 950 kpc (3,100 kly) and was measured as 1.15 × 1015 solar masses. The system was discovered in images taken by the Hubble Space Telescope during the Massive Cluster Survey, MACS. This cluster causes gravitational lensing of distant galaxies producing multiple images. Based on the distribution of the multiple image copies, scientists have been able to deduce and map the distribution of dark matter. The images, released in 2014, were used in the Cluster Lensing And Supernova survey with Hubble (CLASH) to help scientists peer back in time at the early Universe and to discover the distribution of dark matter.

<span class="mw-page-title-main">NGC 4424</span> Spiral galaxy in the constellation Virgo

NGC 4424 is a spiral galaxy located in the equatorial constellation of Virgo. It was discovered February 27, 1865 by German astronomer Heinrich Louis d'Arrest. This galaxy is located at a distance of 13.5 million light years and is receding with a heliocentric radial velocity of 442 km/s. It has a morphological class of SB(s)a, which normally indicates a spiral galaxy with a barred structure (SB), no inner ring feature (s), and tightly-wound spiral arms (a). The galactic plane is inclined at an angle of 62° to the line of sight from the Earth. It is a likely member of the Virgo Cluster of galaxies.

<span class="mw-page-title-main">NGC 6753</span> Galaxy in the constellation Pavo

NGC 6753 is a massive unbarred spiral galaxy, seen almost exactly face-on, in the southern constellation of Pavo. It was discovered by the English astronomer John Herschel on July 5, 1836. The galaxy is located at a distance of 142 million light years from the Milky Way, and is receding with a heliocentric radial velocity of 3,140 km/s. It does not display any indications of a recent interaction with another galaxy or cluster.

<span class="mw-page-title-main">MACS J1149 Lensed Star 1</span> Blue supergiant and second most distant star from earth detected in the constellation Leo

MACS J1149 Lensed Star 1, also known as Icarus, is a blue supergiant star observed through a gravitational lens. It is the fourth most distant individual star to have been detected so far, at approximately 14 billion light-years from Earth. Light from the star was emitted 4.4 billion years after the Big Bang. According to co-discoverer Patrick Kelly, the star is at least a hundred times more distant than the next-farthest non-supernova star observed, SDSS J1229+1122, and is the first magnified individual star seen.

<span class="mw-page-title-main">NGC 4589</span> Galaxy in the constellation Draco

NGC 4589 is an elliptical galaxy located in the Draco constellation. It is at a distance of about 108 million light-years away from the Earth. It is known by its designations PGC 42139 or UGC 7797.

References

  1. 1 2 3 4 5 6 Kelly, P. L.; Rodney, S. A.; Treu, T.; Foley, R. J.; Brammer, G.; Schmidt, K. B.; Zitrin, A.; Sonnenfeld, A.; Strolger, L. -G.; Graur, O.; Filippenko, A. V.; Jha, S. W.; Riess, A. G.; Bradac, M.; Weiner, B. J.; Scolnic, D.; Malkan, M. A.; von Der Linden, A.; Trenti, M.; Hjorth, J.; Gavazzi, R.; Fontana, A.; Merten, J. C.; McCully, C.; Jones, T.; Postman, M.; Dressler, A.; Patel, B.; Cenko, S. B.; et al. (2015). "Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens". Science. 347 (6226): 1123–1126. arXiv: 1411.6009 . Bibcode:2015Sci...347.1123K. doi:10.1126/science.aaa3350. PMID   25745167. S2CID   206633888.
  2. Overbye, Dennis (March 5, 2015). "Astronomers Observe Supernova and Find They're Watching Reruns". New York Times . Retrieved March 5, 2015.
  3. Amina Khan (5 March 2015). "Don't believe the light: Supernova in 'Einstein Cross' is a cosmic trick". Los Angeles Times .
  4. Sharon, K.; Johnson, T. L. (2015). "Revised Lens Model for the Multiply Imaged Lensed Supernova, "Sn Refsdal" in Macs J1149+2223". The Astrophysical Journal. 800 (2): L26. arXiv: 1411.6933 . Bibcode:2015ApJ...800L..26S. doi:10.1088/2041-8205/800/2/L26. S2CID   118735742.
  5. "Cosmological redshift z=1.49". Wolfram Alpha . Retrieved 11 March 2015.
  6. "Caught in the act - Hubble captures first-ever predicted exploding star". www.spacetelescope.org. Retrieved 2015-12-19.
  7. "Detection of a SN near the center of the galaxy cluster field MACS1149 consistent with predictions of a new image of Supernova Refsdal". Patrick Kelly. The Astronomer's Telegram. 13 Dec 2015.
  8. Oguri, Masamune (2015). "Predicted Properties of Multiple Images of the Strongly Lensed Supernova SN Refsdal". Monthly Notices of the Royal Astronomical Society. 449 (1): L86–L89. arXiv: 1411.6443 . Bibcode:2015MNRAS.449L..86O. doi:10.1093/mnrasl/slv025. S2CID   118389176.
  9. Diego, J.M; Broadhurst, T.; Chen, C.; Lim, J.; Zitrin, A.; Chan, B.; Coe7, D.; Ford, H. C.; Lam, D.; Zheng, W. (2016). "A Free-Form Prediction for the Reappearance of Supernova Refsdal in the Hubble Frontier Fields Cluster MACSJ1149.5+2223". Monthly Notices of the Royal Astronomical Society. 456 (1): 356–365. arXiv: 1504.05953 . Bibcode:2016MNRAS.456..356D. doi:10.1093/mnras/stv2638. S2CID   32212490.
  10. Treu, T; et al. (2016). "Refsdal meets Popper: comparing predictions of the re-appearance of the multiply imaged supernova behind MACS1149.5+2223". The Astrophysical Journal. 817 (1): 60. arXiv: 1510.05750 . Bibcode:2016ApJ...817...60T. doi: 10.3847/0004-637X/817/1/60 . S2CID   36631665.
  11. Vega-Ferrero, J.; Diego, J.M; Miranda, V.; Bernstein, G. (2018). "The Hubble Constant from SN Refsdal". Astrophysical Journal Letters. 853 (1): 31–36. arXiv: 1712.05800 . Bibcode:2018ApJ...853...31O. doi: 10.3847/2041-8213/aaa95f . S2CID   55840221.
  12. Kelly, P. L.; et al. (2023). "Constraints on the Hubble constant from Supernova Refsdal's reappearance". Science. 380 (6649): eabh1322. arXiv: 2305.06367v1 . Bibcode:2023Sci...380.1322K. doi:10.1126/science.abh1322. PMID   37167351. S2CID   258615332.