Foe (unit)

Last updated

A foe is a unit of energy equal to 1044 joules or 1051 ergs, used to express the large amount of energy released by a supernova. [1] An acronym for "[ten to the power of] fifty-one ergs", [2] the term was introduced by Gerald E. Brown of Stony Brook University in his work with Hans Bethe, because "it came up often enough in our work". [3]

Without mentioning the foe, Steven Weinberg proposed in 2006 "a new unit called the bethe" (B) with the same value, to "replace" it. [4]

This unit of measure is convenient because a supernova typically releases about one foe of observable energy in a very short period (which can be measured in seconds). In comparison, if the Sun's current luminosity is the same as its average luminosity over its lifetime, it would release 3.827×1026 W × 3.1536×107 s/yr × 1010 yr ≈ 1.2 foe. One solar mass has a rest mass energy of 1787 foe.

See also

Related Research Articles

The Chandrasekhar limit is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about 1.4 M (2.765×1030 kg).

<span class="mw-page-title-main">Supernova</span> Explosion of a star at its end of life

A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">Accelerating expansion of the universe</span> Cosmological phenomenon

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered during 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which both used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are further away appear dimmer, we can use the observed brightness of these supernovae to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the further an object is from us, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerated rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

<span class="mw-page-title-main">Hans Bethe</span> German-American nuclear physicist

Hans Albrecht Bethe was a German-American theoretical physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics, and solid-state physics, and who won the 1967 Nobel Prize in Physics for his work on the theory of stellar nucleosynthesis. For most of his career, Bethe was a professor at Cornell University.

<span class="mw-page-title-main">Superluminous supernova</span> Supernova at least ten times more luminous than a standard supernova

A super-luminous supernova is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material, or pair-instability supernovae.

<span class="mw-page-title-main">Cosmic distance ladder</span> Succession of methods by which astronomers determine the distances to celestial objects

The cosmic distance ladder is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

The convective overturn model of supernovae was proposed by Bethe and Wilson in 1985, and received a dramatic test with SN 1987A, and the detection of neutrinos from the explosion. The model is for type II supernovae, which take place in stars more massive than 8 solar masses.

<span class="mw-page-title-main">Saul Perlmutter</span> American astrophysicist and Nobel laureate

Saul Perlmutter is a U.S. astrophysicist at the Lawrence Berkeley National Laboratory and a professor of physics at the University of California, Berkeley. He is a member of both the American Academy of Arts & Sciences and the American Philosophical Society, and was elected a Fellow of the American Association for the Advancement of Science in 2003. He is also a member of the National Academy of Sciences. Perlmutter shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt and Adam Riess for providing evidence that the expansion of the universe is accelerating. Since 2021, he has been a member of the President’s Council of Advisors on Science and Technology (PCAST).

<span class="mw-page-title-main">Type Ia supernova</span> Type of supernova in binary systems

A Type Ia supernova is a type of supernova that occurs in binary systems in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.

<span class="mw-page-title-main">Nuclear astrophysics</span>

Nuclear astrophysics is an interdisciplinary part of both nuclear physics and astrophysics, involving close collaboration among researchers in various subfields of each of these fields. This includes, notably, nuclear reactions and their rates as they occur in cosmic environments, and modeling of astrophysical objects where these nuclear reactions may occur, but also considerations of cosmic evolution of isotopic and elemental composition (often called chemical evolution). Constraints from observations involve multiple messengers, all across the electromagnetic spectrum (nuclear gamma-rays, X-rays, optical, and radio/sub-mm astronomy), as well as isotopic measurements of solar-system materials such as meteorites and their stardust inclusions, cosmic rays, material deposits on Earth and Moon). Nuclear physics experiments address stability (i.e., lifetimes and masses) for atomic nuclei well beyond the regime of stable nuclides into the realm of radioactive/unstable nuclei, almost to the limits of bound nuclei (the drip lines), and under high density (up to neutron star matter) and high temperature (plasma temperatures up to 109 K). Theories and simulations are essential parts herein, as cosmic nuclear reaction environments cannot be realized, but at best partially approximated by experiments. In general terms, nuclear astrophysics aims to understand the origin of the chemical elements and isotopes, and the role of nuclear energy generation, in cosmic sources such as stars, supernovae, novae, and violent binary-star interactions.

<span class="mw-page-title-main">History of supernova observation</span> Ancient and modern recorded observations of supernovae explosions

The known history of supernova observation goes back to 185 AD, when supernova SN 185 appeared; which is the oldest appearance of a supernova recorded by mankind. Several additional supernovae within the Milky Way galaxy have been recorded since that time, with SN 1604 being the most recent supernova to be observed in this galaxy.

<span class="mw-page-title-main">Type II supernova</span> Explosion of a star 8 to 45 times the mass of the Sun

A Type II supernova results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun (M) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.

<span class="mw-page-title-main">SN 2006gy</span> 2006 hypernova in constellation Perseus

SN 2006gy was an extremely energetic supernova, also referred to as a hypernova or quark-nova, that was discovered on September 18, 2006. It was first observed by Robert Quimby and P. Mondol, and then studied by several teams of astronomers using facilities that included the Chandra, Lick, and Keck Observatories. In May 2007 NASA and several of the astronomers announced the first detailed analyses of the supernova, describing it as the "brightest stellar explosion ever recorded". In October 2007 Quimby announced that SN 2005ap had broken SN 2006gy's record as the brightest-ever recorded supernova, and several subsequent discoveries are brighter still. Time magazine listed the discovery of SN 2006gy as third in its Top 10 Scientific Discoveries for 2007.

<span class="mw-page-title-main">Pair-instability supernova</span> Type of high-energy supernova in very large stars

A pair-instability supernova is a type of supernova predicted to occur when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal radiation pressure supporting a supermassive star's core against gravitational collapse. This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind.

The Hans A. Bethe Prize, is presented annually by the American Physical Society. The prize honors outstanding work in theory, experiment or observation in the areas of astrophysics, nuclear physics, nuclear astrophysics, or closely related fields. The prize consists of $10,000 and a certificate citing the contributions made by the recipient.

<span class="mw-page-title-main">Gerald E. Brown</span> American theoretical physicist

Gerald Edward Brown was an American theoretical physicist who worked on nuclear physics and astrophysics. Since 1968 he had been a professor at the Stony Brook University. He was a distinguished professor emeritus of the C. N. Yang Institute for Theoretical Physics at Stony Brook University.

<span class="mw-page-title-main">Hypernova</span> Supernova that ejects a large mass at unusually high velocity

A hypernova is a very energetic supernova thought to result from an extreme core-collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin energetic jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. They usually appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.

Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting of the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10–20 MeV. Supernovae are considered the strongest and most frequent source of cosmic neutrinos in the MeV energy range.

James Wellington Truran Jr. was an American physicist, known for his research in nuclear astrophysics.

References

  1. Hartmann DH (April 1999). "Afterglows from the largest explosions in the universe". Proc. Natl. Acad. Sci. U.S.A. 96 (9): 4752–5. Bibcode:1999PNAS...96.4752H. doi: 10.1073/pnas.96.9.4752 . PMC   33568 . PMID   10220364.
  2. Marc Herant; Stirling A. Colgate; Willy Benz; Chris Fryer (October 25, 1997). "Neutrinos and Supernovae" (PDF). Los Alamos Sciences. Los Alamos National Laboratory . Retrieved 2008-04-23.
  3. Gerald Brown (2006). Hans Bethe and His Physics. World Scientific. ISBN   981-256-609-0.
  4. "Following the death of Hans Bethe last year, I have proposed a new unit called the bethe, where 1 B is 1051 ergs or 1044 J. This would replace the unit of 1051 ergs, which is commonly used by those studying supernovae – a field in which Bethe worked. Ian Mills, president of the consultative committee on units of the International Committee for Weights and Measures, has concurred and agreed that the bethe can be used." Stephen Weinberg (2006). "A Bethe unit". Physics World. 19 (2): 17. doi:10.1088/2058-7058/19/2/31.