Pair-instability supernova

Last updated
When a star is very massive, the gamma rays produced in its core can become so energetic that some of their energy is drained away into production of particle and antiparticle pairs. The resulting drop in radiation pressure causes the star to partially collapse under its own huge gravity. After this violent collapse, runaway thermonuclear reactions (not shown here) ensue and the star explodes. Sn2006gy collapse ill.jpg
When a star is very massive, the gamma rays produced in its core can become so energetic that some of their energy is drained away into production of particle and antiparticle pairs. The resulting drop in radiation pressure causes the star to partially collapse under its own huge gravity. After this violent collapse, runaway thermonuclear reactions (not shown here) ensue and the star explodes.

A pair-instability supernova is a type of supernova predicted to occur when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal radiation pressure supporting a supermassive star's core against gravitational collapse. [1] This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind. [2]

Contents

Pair-instability supernovae can only happen in stars with a mass range from around 130 to 250 solar masses and low to moderate metallicity (low abundance of elements other than hydrogen and helium – a situation common in Population III stars).

Physics

Photon emission

Photons given off by a body in thermal equilibrium have a black-body spectrum with an energy density proportional to the fourth power of the temperature, as described by the Stefan–Boltzmann law. Wien's law states that the wavelength of maximum emission from a black body is inversely proportional to its temperature. Equivalently, the frequency, and the energy, of the peak emission is directly proportional to the temperature.

Photon pressure in stars

In very massive, hot stars with interior temperatures above about 300000000  K (3×108 K), photons produced in the stellar core are primarily in the form of very high-energy gamma rays. The pressure from these gamma rays fleeing outward from the core helps to hold up the upper layers of the star against the inward pull of gravity. If the level of gamma rays (the energy density) is reduced, then the outer layers of the star will begin to collapse inwards.

Gamma rays with sufficiently high energy can interact with nuclei, electrons, or one another. One of those interactions is to form pairs of particles, such as electron-positron pairs, and these pairs can also meet and annihilate each other to create gamma rays again, all in accordance with Albert Einstein's mass-energy equivalence equation E = m c² .

At the very high density of a large stellar core, pair production and annihilation occur rapidly. Gamma rays, electrons, and positrons are overall held in thermal equilibrium, ensuring the star's core remains stable. By random fluctuation, the sudden heating and compression of the core can generate gamma rays energetic enough to be converted into an avalanche of electron-positron pairs. This reduces the pressure. When the collapse stops, the positrons find electrons and the pressure from gamma rays is driven up, again. The population of positrons provides a brief reservoir of new gamma rays as the expanding supernova's core pressure drops.

Pair-instability

As temperatures and gamma ray energies increase, more and more gamma ray energy is absorbed in creating electron–positron pairs. This reduction in gamma ray energy density reduces the radiation pressure that resists gravitational collapse and supports the outer layers of the star. The star contracts, compressing and heating the core, thereby increasing the rate of energy production. This increases the energy of the gamma rays that are produced, making them more likely to interact, and so increases the rate at which energy is absorbed in further pair production. As a result, the stellar core loses its support in a runaway process, in which gamma rays are created at an increasing rate; but more and more of the gamma rays are absorbed to produce electron–positron pairs, and the annihilation of the electron–positron pairs is insufficient to halt further contraction of the core, resulting in a supernova.

Stellar susceptibility

For a star to undergo pair-instability supernova, the increased creation of positron/electron pairs by gamma ray collisions must reduce outward pressure enough for inward gravitational pressure to overwhelm it. High rotational speed and/or metallicity can prevent this. Stars with these characteristics still contract as their outward pressure drops, but unlike their slower or less metal-rich cousins, these stars continue to exert enough outward pressure to prevent gravitational collapse.

Stars formed by collision mergers having a metallicity Z between 0.02 and 0.001 may end their lives as pair-instability supernovae if their mass is in the appropriate range. [3]

Very large high-metallicity stars are probably unstable due to the Eddington limit, and would tend to shed mass during the formation process.

Stellar behavior

Supernovae vs initial mass and metallicity Supernovae as initial mass-metallicity.svg
Supernovae vs initial mass and metallicity

Several sources describe the stellar behavior for large stars in pair-instability conditions. [4] [5]

Below 100 solar masses

Gamma rays produced by stars of fewer than 100 or so solar masses are not energetic enough to produce electron-positron pairs. Some of these stars will undergo supernovae of a different type at the end of their lives, but the causative mechanisms do not involve pair-instability.

100 to 130 solar masses

These stars are large enough to produce gamma rays with enough energy to create electron-positron pairs, but the resulting net reduction in counter-gravitational pressure is insufficient to cause the core-overpressure required for supernova. Instead, the contraction caused by pair-creation provokes increased thermonuclear activity within the star that repulses the inward pressure and returns the star to equilibrium. It is thought that stars of this size undergo a series of these pulses until they shed sufficient mass to drop below 100 solar masses, at which point they are no longer hot enough to support pair-creation. Pulsing of this nature may have been responsible for the variations in brightness experienced by Eta Carinae in 1843, though this explanation is not universally accepted.[ citation needed ]

130 to 250 solar masses

For very high-mass stars, with mass at least 130 and up to perhaps roughly 250 solar masses, a true pair-instability supernova can occur. In these stars, the first time that conditions support pair production instability, the situation runs out of control. The collapse proceeds to efficiently compress the star's core; the overpressure is sufficient to allow runaway nuclear fusion to burn it in several seconds, creating a thermonuclear explosion. [5] With more thermal energy released than the star's gravitational binding energy, it is completely disrupted; no black hole or other remnant is left behind. This is predicted to contribute to a "mass gap" in the mass distribution of stellar black holes. [6] [7] (This "upper mass gap" is to be distinguished from a suspected "lower mass gap" in the range of a few solar masses.)

In addition to the immediate energy release, a large fraction of the star's core is transformed to nickel-56, a radioactive isotope which decays with a half-life of 6.1 days into cobalt-56. Cobalt-56 has a half-life of 77 days and then further decays to the stable isotope iron-56 (see Supernova nucleosynthesis). For the hypernova SN 2006gy, studies indicate that perhaps 40 solar masses of the original star were released as Ni-56, almost the entire mass of the star's core regions. [4] Collision between the exploding star core and gas it ejected earlier, and radioactive decay, release most of the visible light.

250 solar masses or more

A different reaction mechanism, photodisintegration, follows the initial pair-instability collapse in stars of at least 250 solar masses. This endothermic (energy-absorbing) reaction absorbs the excess energy from the earlier stages before the runaway fusion can cause a hypernova explosion; the star then collapses completely into a black hole. [5]

Appearance

Light curves compared to normal supernovae Comparative hypernova light curves.png
Light curves compared to normal supernovae

Luminosity

Pair-instability supernovae are popularly thought to be highly luminous. This is only the case for the most massive progenitors since the luminosity depends strongly on the ejected mass of radioactive 56Ni. They can have peak luminosities of over 1037 W, brighter than type Ia supernovae, but at lower masses peak luminosities are less than 1035 W, comparable to or less than typical type II supernovae. [8]

Spectrum

The spectra of pair-instability supernovae depend on the nature of the progenitor star. Thus they can appear as type II or type Ib/c supernova spectra. Progenitors with a significant remaining hydrogen envelope will produce a type II supernova, those with no hydrogen but significant helium will produce a type Ib, and those with no hydrogen and virtually no helium will produce a type Ic. [8]

Light curves

In contrast to the spectra, the light curves are quite different from the common types of supernova. The light curves are highly extended, with peak luminosity occurring months after onset. [8] This is due to the extreme amounts of 56Ni expelled, and the optically dense ejecta, as the star is entirely disrupted.

Remnant

Remnants of single massive stars Remnants of single massive stars.svg
Remnants of single massive stars

Pair-instability supernovae completely destroy the progenitor star and do not leave behind a neutron star or black hole. The entire mass of the star is ejected, so a nebular remnant is produced and many solar masses of heavy elements are ejected into interstellar space.

Pair-instability supernovae candidates

Some supernovae candidates for classification as pair-instability supernovae include:

See also

Related Research Articles

The Chandrasekhar limit is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about 1.4 M (2.765×1030 kg). The limit was named after Subrahmanyan Chandrasekhar.

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (M), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Supernova</span> Explosion of a star at its end of life

A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">SN 1987A</span> 1987 supernova event in the constellation Dorado

SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately 51.4 kiloparsecs from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos from the explosion reached Earth on February 23, 1987; as the first supernova discovered that year, it was designated "SN 1987A". Its brightness peaked in May of that year, with an apparent magnitude of about 3.

In astronomy, the term compact object refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter.

<span class="mw-page-title-main">Superluminous supernova</span> Supernova at least ten times more luminous than a standard supernova

A super-luminous supernova is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material, or pair-instability supernovae.

The carbon-burning process or carbon fusion is a set of nuclear fusion reactions that take place in the cores of massive stars (at least 8 at birth) that combines carbon into other elements. It requires high temperatures (> 5×108 K or 50 keV) and densities (> 3×109 kg/m3).

<span class="mw-page-title-main">Intermediate-mass black hole</span> Class of black holes with a mass range of 100 to 100000 solar masses

An intermediate-mass black hole (IMBH) is a class of black hole with mass in the range 102–105 solar masses: significantly more than stellar black holes but less than the 105–109 solar mass supermassive black holes. Several IMBH candidate objects have been discovered in the Milky Way galaxy and others nearby, based on indirect gas cloud velocity and accretion disk spectra observations of various evidentiary strength.

<span class="mw-page-title-main">Stellar black hole</span> Black hole formed by a collapsed star

A stellar black hole is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. They are the remnants of supernova explosions, which may be observed as a type of gamma ray burst. These black holes are also referred to as collapsars.

Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.

<span class="mw-page-title-main">Type Ia supernova</span> Type of supernova in binary systems

A Type Ia supernova is a type of supernova that occurs in binary systems in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.

<span class="mw-page-title-main">Type II supernova</span> Explosion of a star 8 to 45 times the mass of the Sun

A Type II supernova or SNII results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun (M) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.

<span class="mw-page-title-main">Photodisintegration</span> Disintegration of atomic nuclei from high-energy EM radiation

Photodisintegration is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. The reactions are called (γ,n), (γ,p), and (γ,α).

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

A pulsational pair-instability supernova is a supernova impostor event that generally occurs in stars at around 100 to 130 solar mass (M), as opposed to a typical pair-instability supernova which occurs in stars of 130 to 250 M. Like pair-instability supernovae, pulsational pair-instability supernovae are caused by draining of a star's energy in the production of electron-positron pairs but, whereas a pair-instability supernova completely disrupts the star in a massive supernova, the star's pulsational pair-instability eruption sheds 10–25 M. This generally shrinks it down to a mass of less than 100 M, too small for electron-positron pair creation, where it then undergoes a core-collapse supernova or hypernova. It is possible that this is what occurred during the 1843 eruption of the primary star of the Eta Carinae star system although there is no substantial evidence supporting this.

A failed supernova is an astronomical event in time domain astronomy in which a star suddenly brightens as in the early stage of a supernova, but then does not increase to the massive flux of a supernova. They could be counted as a subcategory of supernova imposters. They have sometimes misleadingly been called unnovae.

<span class="mw-page-title-main">Hypernova</span> Supernova that ejects a large mass at unusually high velocity

A hypernova is a very energetic supernova which is believed to result from an extreme core-collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. They usually appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.

Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10 to 20 MeV. Supernovae are considered the strongest and most frequent source of cosmic neutrinos in the MeV energy range.

References

  1. Rakavy, G.; Shaviv, G. (June 1967). "Instabilities in Highly Evolved Stellar Models". The Astrophysical Journal. 148: 803. Bibcode:1967ApJ...148..803R. doi: 10.1086/149204 .
  2. Fraley, Gary S. (1968). "Supernovae Explosions Induced by Pair-Production Instability" (PDF). Astrophysics and Space Science . 2 (1): 96–114. Bibcode:1968Ap&SS...2...96F. doi:10.1007/BF00651498. S2CID   122104256.
  3. Belkus, H.; Van Bever, J.; Vanbeveren, D. (2007). "The Evolution of Very Massive Stars". The Astrophysical Journal . 659 (2): 1576–1581. arXiv: astro-ph/0701334 . Bibcode:2007ApJ...659.1576B. doi:10.1086/512181. S2CID   16604353.
  4. 1 2 Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; et al. (2007). "SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae". The Astrophysical Journal. 666 (2): 1116–1128. arXiv: astro-ph/0612617 . Bibcode:2007ApJ...666.1116S. doi:10.1086/519949. S2CID   14785067.
  5. 1 2 3 Fryer, C.L.; Woosley, S. E.; Heger, A. (2001). "Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients". The Astrophysical Journal. 550 (1): 372–382. arXiv: astro-ph/0007176 . Bibcode:2001ApJ...550..372F. doi:10.1086/319719. S2CID   7368009.
  6. Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M. (2019-09-11). "Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo" (PDF). The Astrophysical Journal. 882 (2): L24. arXiv: 1811.12940 . Bibcode:2019ApJ...882L..24A. doi: 10.3847/2041-8213/ab3800 . hdl: 1721.1/132410 . ISSN   2041-8213. S2CID   119216482.
  7. Farmer, R.; Renzo, M.; de Mink, S. E.; Marchant, P.; Justham, S. (2019). "Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap". The Astrophysical Journal. 887 (1): 53. arXiv: 1910.12874 . Bibcode:2019ApJ...887...53F. doi: 10.3847/1538-4357/ab518b . ISSN   1538-4357. S2CID   204949567.
  8. 1 2 3 Kasen, D.; Woosley, S. E.; Heger, A. (2011). "Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout". The Astrophysical Journal. 734 (2): 102. arXiv: 1101.3336 . Bibcode:2011ApJ...734..102K. doi:10.1088/0004-637X/734/2/102. S2CID   118508934.
  9. Gal-Yam, A.; Mazzali, P.; Ofek, E. O.; et al. (3 December 2009), "Supernova 2007bi as a pair-instability explosion", Nature , 462 (7273): 624–627, arXiv: 1001.1156 , Bibcode:2009Natur.462..624G, doi:10.1038/nature08579, PMID   19956255, S2CID   4336232
  10. Cooke, J.; Sullivan, M.; Gal-Yam, A.; Barton, E. J.; Carlberg, R. G.; Ryan-Weber, E. V.; Horst, C.; Omori, Y.; Díaz, C. G. (2012). "Superluminous supernovae at redshifts of 2.05 and 3.90". Nature. 491 (7423): 228–231. arXiv: 1211.2003 . Bibcode:2012Natur.491..228C. doi:10.1038/nature11521. PMID   23123848. S2CID   4397580.
  11. Kozyreva, Alexandra; Kromer, Markus; Noebauer, Ulrich M; Hirschi, Raphael (21 September 2018). "OGLE14-073 – a promising pair-instability supernova candidate". Monthly Notices of the Royal Astronomical Society . 479 (3): 3106–3114. arXiv: 1804.05791 . doi:10.1093/mnras/sty983. ISSN   0035-8711. S2CID   119430876 via OUP.
  12. Gomez, Sebastian; Berger, Edo; Nicholl, Matt; Blanchard, Peter K.; Villar, V. Ashley; Patton, Locke; Chornock, Ryan; Leja, Joel; Hosseinzadeh, Griffin; Cowperthwaite, Philip S. (2019). "SN 2016iet: The Pulsational or Pair Instability Explosion of a Low-metallicity Massive CO Core Embedded in a Dense Hydrogen-poor Circumstellar Medium". The Astrophysical Journal. 881 (2): 87. arXiv: 1904.07259 . Bibcode:2019ApJ...881...87G. doi: 10.3847/1538-4357/ab2f92 . S2CID   119314293.
  13. Schulze, Steve; Fransson, Claes; Kozyreva, Alexandra; Cheng, Ting-Wan; Yaron, Ofer; Jerkstrand, Anders; Gal-Yam, Avishay; Sollerman, Jesper; Yan, Lin; Kangas, Tuomas (2023). "1100 days in the life of the supernova 2018ibb -- The best pair-instability supernova candidate, to date". Astronomy and Astrophysics. in press. arXiv: 2305.05796 . Bibcode:2023arXiv230505796S.