Supernova impostor

Last updated
NGC 3184 showing SN impostor SN 2010dn. 2010dn-NGC3184-2010Jun01.jpg
NGC 3184 showing SN impostor SN 2010dn.

Supernova impostors are stellar explosions that appear at first to be a supernova but do not destroy their progenitor stars. As such, they are a class of extra-powerful novae. They are also known as Type V supernovae, Eta Carinae analogs, and giant eruptions of luminous blue variables (LBV). [2]

Contents

Appearance, origin and mass loss

Supernova impostors appear as remarkably faint supernovae of spectral type IIn—which have hydrogen in their spectrum and narrow spectral lines that indicate relatively low gas speeds. These impostors exceed their pre-outburst states by several magnitudes, with typical peak absolute visual magnitudes of −11 to −14, making these outbursts as bright as the most luminous stars. The trigger mechanism of these outbursts remains unexplained, though it is thought to be caused by violating the classical Eddington luminosity limit, initiating severe mass loss. If the ratio of radiated energy to kinetic energy is near unity, as in Eta Carinae, then we might expect an ejected mass of about 0.16 solar masses.

Examples

Possible examples of supernova impostors include the Great Eruption of Eta Carinae, P Cygni, SN 1961V, [3] SN 1954J, SN 1997bs, SN 2008S in NGC 6946, and SN 2010dn [1] where detections of the surviving progenitor stars are claimed.

One supernova impostor that made news after the fact was the one observed on October 20, 2004, in the galaxy UGC 4904 by Japanese amateur astronomer Kōichi Itagaki. This LBV star exploded just two years later, on October 11, 2006, as supernova SN 2006jc. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Supernova</span> Explosion of a star at its end of life

A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

<span class="mw-page-title-main">Eta Carinae</span> Stellar system in the constellation Carina

Eta Carinae, formerly known as Eta Argus, is a stellar system containing at least two stars with a combined luminosity greater than five million times that of the Sun, located around 7,500 light-years distant in the constellation Carina. Previously a 4th-magnitude star, it brightened in 1837 to become brighter than Rigel, marking the start of its so-called "Great Eruption". It became the second-brightest star in the sky between 11 and 14 March 1843 before fading well below naked-eye visibility after 1856. In a smaller eruption, it reached 6th magnitude in 1892 before fading again. It has brightened consistently since about 1940, becoming brighter than magnitude 4.5 by 2014.

<span class="mw-page-title-main">Superluminous supernova</span> Supernova at least ten times more luminous than a standard supernova

A super-luminous supernova is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material, or pair-instability supernovae.

<span class="mw-page-title-main">NGC 300</span> Galaxy in the constellation Sculptor

NGC 300 (also known as Caldwell 70 or the Sculptor Pinwheel Galaxy) is a spiral galaxy in the constellation Sculptor. It was discovered on 5 August 1826 by Scottish astronomer James Dunlop. It is one of the closest galaxies to the Local Group, and probably lies between the latter and the Sculptor Group. It is the brightest of the five main spirals in the direction of the Sculptor Group. It is inclined at an angle of 42° when viewed from Earth and shares many characteristics of the Triangulum Galaxy. It is 94,000 light-years in diameter, somewhat smaller than the Milky Way, and has an estimated mass of (2.9 ± 0.2) × 1010M.

<span class="mw-page-title-main">Messier 74</span> Face-on spiral galaxy in the constellation Pisces

Messier 74 is a large spiral galaxy in the equatorial constellation Pisces. It is about 32 million light-years away from Earth. The galaxy contains two clearly defined spiral arms and is therefore used as an archetypal example of a grand design spiral galaxy. The galaxy's low surface brightness makes it the most difficult Messier object for amateur astronomers to observe. Its relatively large angular size and the galaxy's face-on orientation make it an ideal object for professional astronomers who want to study spiral arm structure and spiral density waves. It is estimated that M74 hosts about 100 billion stars.

<span class="mw-page-title-main">NGC 2403</span> Galaxy in the constellation Camelopardalis

NGC 2403 is an intermediate spiral galaxy in the constellation Camelopardalis. It is an outlying member of the M81 Group, and is approximately 8 million light-years distant. It bears a similarity to M33, being about 50,000 light years in diameter and containing numerous star-forming H II regions. The northern spiral arm connects it to the star forming region NGC 2404. NGC 2403 can be observed using 10×50 binoculars. NGC 2404 is 940 light-years in diameter, making it one of the largest known H II regions. This H II region represents striking similarity with NGC 604 in M33, both in size and location in galaxy.

<span class="mw-page-title-main">NGC 3184</span> Galaxy in the constellation Ursa Major

NGC 3184, the Little Pinwheel Galaxy, is a spiral galaxy approximately 40 million light-years away in the constellation Ursa Major. Its name comes from its resemblance to the Pinwheel Galaxy. It was discovered on 18 March 1787 by German-British astronomer William Herschel. It has two HII regions named NGC 3180 and NGC 3181.

<span class="mw-page-title-main">Luminous blue variable</span> Type of star that is luminous, blue, and variable in brightness

Luminous blue variables (LBVs) are rare, massive and evolved stars that show unpredictable and sometimes dramatic variations in their spectra and brightness. They are also known as S Doradus variables after S Doradus, one of the brightest stars of the Large Magellanic Cloud.

<span class="mw-page-title-main">P Cygni</span> Variable star in the constellation Cygnus

P Cygni is a variable star in the constellation Cygnus. The designation "P" was originally assigned by Johann Bayer in Uranometria as a nova. Located about 5,300 light-years from Earth, it is a hypergiant luminous blue variable (LBV) star of spectral type B1-2 Ia-0ep that is one of the most luminous stars in the Milky Way.

<span class="mw-page-title-main">NGC 4656 and NGC 4657</span> Galaxy in constellation Canes Venatici

NGC 4656/57 is a highly warped edge-on barred spiral galaxy located in the local universe 30 million light years away from Earth in the constellation Canes Venatici. This galaxy is sometimes called the Hockey Stick Galaxy or the Crowbar Galaxy. Its unusual shape is thought to be due to an interaction between NGC 4656, NGC 4631, and NGC 4627. The galaxy is a member of the NGC 4631 Group.

<span class="mw-page-title-main">AG Carinae</span> Luminous variable star in the constellation Carina

AG Carinae is a star in the constellation Carina. It is classified as a luminous blue variable (LBV) and is one of the most luminous stars in the Milky Way. The great distance and intervening dust mean that the star is not usually visible to the naked eye; its apparent brightness varies erratically between magnitude 5.7 and 9.0.

<span class="mw-page-title-main">Type Ib and Ic supernovae</span> Types of supernovae caused by a star collapsing

Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum of Type Ia supernovae, they lack the absorption line of silicon. Compared to Type Ib, Type Ic supernovae are hypothesized to have lost more of their initial envelope, including most of their helium. The two types are usually referred to as stripped core-collapse supernovae.

<span class="mw-page-title-main">NGC 4559</span> Galaxy in the constellation Coma Berenicies

NGC 4559 is an intermediate spiral galaxy with a weak inner ring structure in the constellation Coma Berenices. Distance estimates for NGC 4559 range from about 28 million light-years to 31 million light-years, averaging about 29 million light-years. It was discovered on 11 April 1785 by German-British astronomer William Herschel.

<span class="mw-page-title-main">SN 2006gy</span> 2006 hypernova in constellation Perseus

SN 2006gy was an extremely energetic supernova, also referred to as a hypernova, that was discovered on September 18, 2006. It was first observed by Robert Quimby and P. Mondol, and then studied by several teams of astronomers using facilities that included the Chandra, Lick, and Keck Observatories. In May 2007, NASA and several of the astronomers announced the first detailed analyses of the supernova, describing it as the "brightest stellar explosion ever recorded". In October 2007, Quimby announced that SN 2005ap had broken SN 2006gy's record as the brightest-ever recorded supernova, and several subsequent discoveries are brighter still. Time magazine listed the discovery of SN 2006gy as third in its Top 10 Scientific Discoveries for 2007.

<span class="mw-page-title-main">Hypergiant</span> Rare star with tremendous luminosity and high rates of mass loss by stellar winds

A hypergiant (luminosity class 0 or Ia+) is a very rare type of star that has an extremely high luminosity, mass, size and mass loss because of its extreme stellar winds. The term hypergiant is defined as luminosity class 0 (zero) in the MKK system. However, this is rarely seen in literature or in published spectral classifications, except for specific well-defined groups such as the yellow hypergiants, RSG (red supergiants), or blue B(e) supergiants with emission spectra. More commonly, hypergiants are classed as Ia-0 or Ia+, but red supergiants are rarely assigned these spectral classifications. Astronomers are interested in these stars because they relate to understanding stellar evolution, especially star formation, stability, and their expected demise as supernovae. Notable examples of hypergiants include the Pistol Star, a blue hypergiant located close to the Galactic Center and one of the most luminous stars known; Rho Cassiopeiae, a yellow hypergiant that is one of the brightest to the naked eye; and Mu Cephei (Herschel's "Garnet Star"), one of the largest and brightest stars known.

SN 1961V was an abnormal, supernova-like event that was a potential supernova impostor. The potential impostor nature of SN 1961V was first identified by Fritz Zwicky in 1964. SN 1961V occurred in galaxy NGC 1058, about 9.3 Mpc away. Unlike many supernovae, the progenitor star is tentatively known: an extremely large, very bright blue star, similar to Eta Carinae. Mass estimates of the precursor star were as high as 2000 times the mass of the sun, but these are likely to be extreme overestimates. If SN 1961V was not a supernova then it was most likely an extremely large outburst by a luminous blue variable star.

<span class="mw-page-title-main">NGC 5806</span> Spiral galaxy in the constellation Virgo

NGC 5806 is an intermediate spiral galaxy in the constellation Virgo. It was discovered on February 24, 1786, by the astronomer John Herschel. It is located about 70 million light-years away from the Milky Way. It is a member of the NGC 5846 Group.

A pulsational pair-instability supernova is a supernova impostor event that generally occurs in stars at around 100 to 130 solar mass (M), as opposed to a typical pair-instability supernova which occurs in stars of 130 to 250 M. Like pair-instability supernovae, pulsational pair-instability supernovae are caused by draining of a star's energy in the production of electron-positron pairs but, whereas a pair-instability supernova completely disrupts the star in a massive supernova, the star's pulsational pair-instability eruption sheds 10–25 M. This generally shrinks it down to a mass of less than 100 M, too small for electron-positron pair creation, where it then undergoes a core-collapse supernova or hypernova. It is possible that this is what occurred during the 1843 eruption of the primary star of the Eta Carinae star system although there is no substantial evidence supporting this.

SN 2009ip was a supernova discovered in 2009 in the spiral galaxy NGC 7259 in the constellation of Piscis Austrinus. Since the brightness waned after days post-discovery, it was redesignated as Luminous blue variable (LBV) Supernova impostor.

<span class="mw-page-title-main">NGC 4242</span> Galaxy in constellation Canes Venatici

NGC 4242 is a spiral galaxy in the northern constellation of Canes Venatici. The galaxy is about 18 million light years away. It was discovered on 10 April 1788 by William Herschel, and it was described as "very faint, considerably large, irregular, round, very gradually brighter in the middle, resolvable" by John Louis Emil Dreyer, the compiler of the New General Catalogue.

References

  1. 1 2 Smith, Nathan; Weidong, Li; Silverman, Jeffrey; Ganeshalingam, Mo; Filippenko, Alexei (2011). "Luminous Blue Variable eruptions and related transients: Diversity of progenitors and outburst properties". Monthly Notices of the Royal Astronomical Society. 415 (1): 773–810. arXiv: 1010.3718 . Bibcode:2011MNRAS.415..773S. doi: 10.1111/j.1365-2966.2011.18763.x . S2CID   85440811.
  2. Smith, Nathan; Ganeshalingam, Mohan; Chornock, Ryan; Filippenko, Alexei; Weidong, Li; et al. (2009). "SN 2008S: A Cool Super-Eddington Wind in a Supernova Impostor". Astrophysical Journal Letters. 697 (1): L49–L53. arXiv: 0811.3929 . Bibcode:2009ApJ...697L..49S. doi:10.1088/0004-637X/697/1/L49. S2CID   17627678.
  3. Kochanek, C.S.; Szczygiel, D.M.; Stanek, K.Z. (2010). "The Supernova Impostor Impostor SN 1961V: Spitzer Shows That Zwicky Was Right (Again)". The Astrophysical Journal. 737 (2): 76. arXiv: 1010.3704 . Bibcode:2011ApJ...737...76K. doi:10.1088/0004-637X/737/2/76. S2CID   118483939.
  4. "NASA – Supernova Imposter Goes Supernova". Nasa.gov. Retrieved 2010-01-13.