Common envelope jets supernova (CEJSN) is a type of supernova, where the explosion is caused by the merger of a giant or supergiant star with a compact star such as a neutron star or a black hole. As the compact star plunges into the envelope of the giant/supergiant, it begins to accrete matter from the envelope and launches jets that can disrupt the envelope. Often, the compact star eventually merges with the core of the giant/supergiant; other times the infall stops before core merger.
This kind of supernova has been invoked to explain certain kinds of supernova-like phenomena, including iPTF14hls.
In order to explain the unusual supernova iPTF14hls, Soker and Gilkis 2018 proposed a model where astrophysical jets eject the common envelope of a merging star. [1] They may constitute 10^-6 to 2*10^-5 of all core collapse supernovae. [2]
In their model, iPTF14hls was a binary star consisting of a giant star and a neutron star. The latter plunged into the envelope of the former and began to accrete material, emitting neutrinos as it did so but without substantially deforming the giant. [3] Eventually, it would have reached the core of the giant and accreted mass at a sufficient rate to produce jets. These jets emanate from the polar areas of the neutron star and can effectively eject matter in these directions, but do not effectively act on material accreting along the neutron star's equatorial plane, which thus continues to reach the neutron star. [4] The jets impact the envelope, inflating it in the form of large bubbles ("cocoons" [5] ) that remove material from the envelope [6] at speeds approaching a tenth of the speed of light. [7] This causes the envelope of the giant star to be ejected over a timespan of a few hundred days, before the core itself is consumed in about a day, [8] producing gravitational waves. [9] The exiting jets can interact with pre-existent gas clouds around the giant, which creates the luminosity of the supernova [10] and which can last for timespans reaching years. [11]
Depending on the original architecture of the stellar system, many variations on this general process are possible, [12] such as when the incoming star is itself a binary such as a neutron star-neutron star binary or other combinations of a neutron star with a companion. [13] In these cases, the binary may break up during the merger, with one of the binary objects ejected. [14] The original core of the star may be tidally disrupted, forming an accretion disk around the neutron star. [15] The incoming neutron star may instead be a black hole; these may be the source of cosmic ultra-high-energy neutrinos. [16]
There are several processes that can cause the neutron star to penetrate the giant. Giant stars grow in size just at the end of their evolution, and can envelop a companion star in the process. When a star goes supernova and produces a neutron star, the neutron star receives a "kick" that causes it to penetrate the other star. Finally, interactions between the neutron star-giant binary with a third star, typically the third member star of the group, can cause the neutron star orbit to contract until it interacts with the envelope of the giant. [17]
Already before the actual penetration, tidal acceleration of the giant's envelope by the neutron star causes it to expand, possibly clearing the polar regions of the giant of matter before the merger begins. This lets the jets exit the star from the poles before the neutron star merges with the core; otherwise they are only visible at the beginning of the envelope interaction or when the actual core interacts with the neutron star. [18] The energy that the jets inject into the envelope can cause it to expand so that even when the orbit takes the neutron star out of the envelope, accretion and jet launching continue. These jets are weaker than the ones launched inside the original envelope, but are more efficient at creating radiation as they interact with already-emplaced gas. [19]
A key requirement for the occurrence of a common envelope jets supernova is that the neutron star can form an accretion disk as it begins to absorb the material of the companion. [20] Hydrodynamic simulations have offered contrasting results on whether this is possible and on the accretion rate resulting from the interaction, [17] although there is empirical evidence that at least white dwarfs can generate such disks and jets; white dwarf properties resemble these of neutron stars. [20] The process requires high accretion rates, which in turn require that large amounts of material and energy be removed from the proximity of the neutron star; this is accomplished through the emission of neutrinos, which carry energy away. [6]
The conditions during a CEJSN may allow the r-process of nucleosynthesis to take place [16] in the jets, [21] in particular when a binary neutron star is involved, [12] since unlike the core of a conventional supernova the CEJSN is not an effective neutrino source. [22] Unlike regular neutron star mergers, the CEJSN is not delayed by the time it takes for the neutron star binary to shrink from gravitational wave emission and thus CEJSN can contribute r-process elements early in the history of the universe. [23] The r-process element enrichment of the galaxy Reticulum II may be explained through a CEJSN, which efficiently distributed r-process elements across the galaxy. [24]
Apart from iPTF14hls, other events such as the supernovae SN1979c, SN1998e, [5] SN2019zrk, [25] SN 2020faa and the radio transient VT J121001+495647 have been proposed to be CEJSNs. The gamma-ray burst GRB 101225A could have formed through a common envelope jets supernova-like interaction with a helium star. [16] A CEJSN where the core of the companion star was disrupted may have given rise to the enigmatic supernova remnant W49B. [26] Fast blue optical transients might constitute CEJSNs as well. [7]
This process does not always result in the immediate destruction of the giant; if the giant star survives, a supernova impostor can occur instead, [17] possible examples are the supernova SN 2009ip [27] and the transient AT2018cow. [28] The mass loss the giant suffers during the interaction can cause the orbit of the neutron star to expand and thus to exit the giant's envelope again; that way repeating explosions can occur [29] since the core isn't destroyed by the merger. [7] Eventually, a stripped core can be left [30] that itself will go supernova and form another neutron star; this may be a major source of binary neutron stars. [28]
A neutron star is a collapsed core of a massive supergiant star. Stars that collapse into neutron stars have a total mass of between 10 and 25 solar masses (M☉), or possibly more for those that are especially rich in elements heavier than hydrogen and helium. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M☉. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.
A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.
SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately 51.4 kiloparsecs from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos from the explosion reached Earth on February 23, 1987 and was designated "SN 1987A" as the first supernova discovered that year. Its brightness peaked in May of that year, with an apparent magnitude of about 3.
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to Earth's. A white dwarf's low luminosity comes from the emission of residual thermal energy; no fusion takes place in a white dwarf. The nearest known white dwarf is Sirius B, at 8.6 light years, the smaller component of the Sirius binary star. There are currently thought to be eight white dwarfs among the hundred star systems nearest the Sun. The unusual faintness of white dwarfs was first recognized in 1910. The name white dwarf was coined by Willem Jacob Luyten in 1922.
A variable star is a star whose brightness as seen from Earth changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:
A Thorne–Żytkow object, also known as a hybrid star, is a conjectured type of star wherein a red giant or red supergiant contains a neutron star at its core, formed from the collision of the giant with the neutron star. Such objects were hypothesized by Kip Thorne and Anna Żytkow in 1977. In 2014, it was discovered that the star HV 2112, located in the Small Magellanic Cloud (SMC), was a strong candidate. Another possible candidate is the star HV 11417, also located in the SMC.
X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the donor, to the other component, called the accretor, which is either a neutron star or black hole. The infalling matter releases gravitational potential energy, up to 30 percent of its rest mass, as X-rays. The lifetime and the mass-transfer rate in an X-ray binary depends on the evolutionary status of the donor star, the mass ratio between the stellar components, and their orbital separation.
A protoplanetary nebula or preplanetary nebula is an astronomical object which is at the short-lived episode during a star's rapid evolution between the late asymptotic giant branch (LAGB)[a] phase and the subsequent planetary nebula (PN) phase. A PPN emits strongly in infrared radiation, and is a kind of reflection nebula. It is the second-from-the-last high-luminosity evolution phase in the life cycle of intermediate-mass stars.
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.
A Type Ia supernova is a type of supernova that occurs in binary systems in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.
Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.
In astronomy, a common envelope (CE) is gas that contains a binary star system. The gas does not rotate at the same rate as the embedded binary system. A system with such a configuration is said to be in a common envelope phase or undergoing common envelope evolution.
p-nuclei (p stands for proton-rich) are certain proton-rich, naturally occurring isotopes of some elements between selenium and mercury inclusive which cannot be produced in either the s- or the r-process.
GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.
Noam Soker is an Israeli theoretical astrophysicist. He was the chair of the physics department at the Technion – Israel Institute of Technology from 2009 to 2015.
A hypernova is a very energetic supernova which is believed to result from an extreme core collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release such intense gamma rays that they often appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.
iPTF14hls is an unusual supernova star that erupted continuously for about 1,000 days beginning in September 2014 before becoming a remnant nebula. It had previously erupted in 1954. None of the theories nor proposed hypotheses fully explain all the aspects of the object.
SN 2009ip was a supernova discovered in 2009 in the spiral galaxy NGC 7259 in the constellation of Piscis Austrinus. Since the brightness waned after days post-discovery, it was redesignated as Luminous blue variable (LBV) Supernova impostor.
An Intermediate Luminosity Optical Transient (ILOT) is an astronomical object which undergoes an optically detectable explosive event with an absolute magnitude (M) brighter than a classical nova (M ~ −8) but fainter than that of a supernova (M ~ −17). That nine magnitude range corresponds to a factor of nearly 4000 in luminosity, so the ILOT class may include a wide variety of objects. The term ILOT first appeared in a 2009 paper discussing the nova-like event NGC 300 OT2008-1. As the term has gained more widespread use, it has begun to be applied to some objects like KjPn 8 and CK Vulpeculae for which no transient event has been observed, but which may have been dramatically affected by an ILOT event in the past. The number of ILOTs known is expected to increase substantially when the Vera C. Rubin Observatory becomes operational.
PSR J1946+2052 is a short-period binary pulsar system located 11,000–14,000 light-years (3,500–4,200 pc) away from Earth in the constellation Vulpecula. The system consists of a pulsar and a neutron star orbiting around their common center of mass every 1.88 hours, which is the shortest orbital period among all known double neutron star systems as of 2022. The general theory of relativity predicts their orbits are gradually decaying due to emitting gravitational waves, which will eventually lead to a neutron star merger and a kilonova in 46 million years.