Event type | Gamma-ray burst |
---|---|
Date | c. 5.5 billion years ago (detected 25 December 2010 4:59 18:38 UTC) |
Duration | c. 28 minutes |
Constellation | Andromeda |
Right ascension | 00h 00m 47.51s |
Declination | +44° 36′ 01.1″ |
Distance | c. 5.5 billion ly |
Redshift | 0.33 |
Other designations | GRB 101225A |
GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.
In papers published in the journal Nature , two different groups of astronomers proposed different theories about the event's origin. Sergio Campana's group proposes that the event was caused by a comet crashing onto a neutron star within our own galaxy. Christina Thöne's group prefers a more conventional supernova mechanism, involving a merger between a helium star and a neutron star at a distance of about 5.5 billion light years from Earth.
The gamma ray burst, in the constellation Andromeda, was first detected by the NASA Swift Gamma-Ray Burst Mission at 18:38 UT on December 25, 2010. The gamma-ray emission had a duration of at least 28 minutes, which is unusually long. After news of the gamma-ray burst was sent to other observatories, the longer-wavelength "afterglow" of the burst was monitored by on-ground observatories and the Hubble Space Telescope. [1] After the unusually long duration of gamma emissions, x-ray emissions in the afterglow continued for just two days, an unusually short duration for this phase. [2] Optical emissions observed over the first 10 days were characterized as those of "an expanding, cooling blackbody with a large initial radius". [3] A faint light source appeared about 10 days after the burst and reached its maximum brightness 30 days after its appearance; observers described this light source as looking like a supernova. [4]
On January 6, 2011, the 10m Keck-I telescope equipped with the Low Resolution Imaging Spectrometer (LRIS) conducted spectroscopic measurements of the host galaxy of GRB 101225A. A 900s spectrum was obtained; it consisted of blue and red channels, covering the wavelength ranges ~320–550 nm and ~500–820 nm, respectively. [5] Isotropic energy was estimated at (7.8 ± 1.6)×1050 erg from the Burst Alert Telescope (BAT) data. [6]
The unusual characteristics of the afterglow led astronomers to generate novel hypotheses to explain the event. [2] Observers were unable to ascertain the burst's distance from Earth, and the two alternative hypotheses of its origin place the event at radically different distances. [1]
Christina Thöne, of the Institute of Astrophysics of Andalusia in Spain, was lead author of a paper that proposed that the burst occurred in a binary system where a neutron star orbited a normal helium star that had just entered its red giant phase, which had enormously expanded its outer atmosphere. [7] During the expansion, the red giant star engulfed the neutron star, resulting in both the ejection of the giant's atmosphere and rapid tightening of the neutron star's orbit. Once the two stars became wrapped in a common envelope of gas, the neutron star may have merged with the giant's core after just five orbits, or about 18 months. The result of the merger was the birth of a black hole or a magnetar and the production of oppositely directed jets of particles moving at nearly the speed of light, followed by a weak supernova, a common envelope jets supernova. The particle jets produced gamma rays. Jet interactions with gas ejected before the merger explain much of the burst's different nature. Based on this interpretation, the event took place about 5.5 billion light-years away (redshift 0.33), and the team has detected what may be a faint galaxy at the right location. [1] [8]
An alternative hypothesis, offered by a team led by Sergio Campana of the Brera Astronomical Observatory (INAF), proposes that GRB 101225A was produced by a comet-like object that fell into a neutron star located in our own galaxy, only some 10,000 light-years from Earth. [1] In this model, the comet-like object falls onto the neutron star and is disrupted by tidal forces. Hard X-ray emission (the burst) results from the first matter falling onto the neutron star. X-ray emission and initial variations detected by Swift are attributed to clumps of material striking the star as the disc formed around it. Then the disk cools down and emits only at UV and optical wavelengths. [9]
More recently, at the 2013 Huntsville Gamma-ray Burst Symposium, several scientists proposed that GRB 101225A, along with GRB 111209A and 121027A are part of a new class of gamma ray bursts, termed ultra-long bursts and caused by the collapse of low metallicity blue supergiant stars.
Andrew Levan and his colleagues used the Gemini North Telescope to determine that GRB 101225A was 7 billion light years distant [10] [11] [12] much further than original estimates. This greater distance gives it a much higher energy level, which combined with longer duration and an absence of a supernova signature have led scientists, such as Bruce Gendre to suggest that these ultra-long bursts are the result of collapsing blue supergiant stars. [13] [14]
Astrophysicist Sergio Campana told Space.com that he thinks this was "the discovery of a completely new astrophysical phenomenon that [had] not been envisaged before." He also said, "If tidal disruption of minor bodies around neutron stars is really happening", this event would not be "unique". [15] Christina Thöne has said, "What the Christmas burst seems to be telling us is that the family of gamma-ray bursts is more diverse than we fully appreciate." [1]
In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, being the brightest and most extreme explosive events in the entire universe, as NASA describes the bursts as the "most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Gamma-ray bursts can last from ten milliseconds to several hours. After the initial flash of gamma rays, an "afterglow" is emitted, which is longer lived and usually emitted at longer wavelengths.
Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).
Cornelis A. "Neil" Gehrels was an American astrophysicist specializing in the field of gamma-ray astronomy. He was Chief of the Astroparticle Physics Laboratory at NASA's Goddard Space Flight Center (GSFC) from 1995 until his death, and was best known for his work developing the field from early balloon instruments to today's space observatories such as the NASA Swift mission, for which he was the principal investigator. He was leading the WFIRST wide-field infrared telescope forward toward a launch in the mid-2020s. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences.
Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.
GRB 060614 was a gamma-ray burst detected by the Neil Gehrels Swift Observatory on June 14, 2006, with peculiar properties. It challenged a previously held scientific consensus on gamma-ray burst progenitors and black holes.
GRB 080319B was a gamma-ray burst (GRB) detected by the Swift satellite at 06:12 UTC on March 19, 2008. The burst set a new record for the farthest object that was observable with the naked eye: it had a peak visual apparent magnitude of 5.7 and remained visible to human eyes for approximately 30 seconds. The magnitude was brighter than 9.0 for approximately 60 seconds. If viewed from 1 AU away, it would have had a peak apparent magnitude of −67.57. It had an absolute magnitude of −38.6, beaten by GRB 220101A with −39.4 in 2023.
Nial Rahil Tanvir is a British astronomer at the University of Leicester. His research specialisms are the Extragalactic distance scale, Galaxy evolution and Gamma ray bursts. Tanvir has featured in various TV programs, including The Sky at Night hosted by Sir Patrick Moore, and Horizon
GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.
GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009, at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, making it one of the most distant objects detected at that time with a spectroscopic redshift.
GRB 990123 is a gamma-ray burst which was detected on January 23, 1999. It was the first GRB for which a simultaneous optical flash was detected. Astronomers first managed to obtain a visible-light image of a GRB as it occurred on January 23, 1999, using the ROTSE-I telescope in Los Alamos, New Mexico. The ROTSE-I was operated by a team under Dr. Carl W. Akerlof of the University of Michigan and included members from Los Alamos National Laboratory and Lawrence Livermore National Laboratory. The robotic telescope was fully automated, responding to signals from NASA's BATSE instrument aboard the Compton Gamma Ray Observatory within seconds, without human intervention. In the dark hours of the morning of January 23, 1999, the Compton satellite recorded a gamma-ray burst that lasted for about a minute and a half. There was a peak of gamma and X-ray emission 25 seconds after the event was first detected, followed by a somewhat smaller peak 40 seconds after the beginning of the event. The emission then fizzled out in a series of small peaks over the next 50 seconds, and eight minutes after the event had faded to a hundredth of its maximum brightness. The burst was so strong that it ranked in the top 2% of all bursts detected.
GRB 000131 was a gamma-ray burst (GRB) that was detected on 31 January 2000 at 14:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.
GRB 020813 was a gamma-ray burst (GRB) that was detected on 13 August 2002 at 02:44 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.
GRB 011211 was a gamma-ray burst (GRB) detected on December 11, 2001. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.
GRB 030329 was a gamma-ray burst (GRB) that was detected on 29 March 2003 at 11:37 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths. GRB 030329 was the first burst whose afterglow definitively exhibited characteristics of a supernova, confirming the existence of a relationship between the two phenomena.
GRB 070714B was a gamma-ray burst (GRB) that was detected on 14 July 2007 at 04:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.
GRB 130427A was a record-setting gamma-ray burst, discovered starting on April 27, 2013. This GRB was associated to SN 2013cq, of which the appearance of optical signal was predicted on May 2, 2013 and detected on May 13, 2013. The Fermi space observatory detected a gamma-ray with an energy of at least 94 billion electron volts. It was simultaneously detected by the Burst Alert Telescope aboard the Swift telescope and was the brightest burst Swift had ever detected. It was one of the five closest GRBs, at about 3.6 billion light-years away, and was comparatively long-lasting.
Fermi's Large Area Telescope (LAT) recorded one gamma ray with an energy of at least 94 billion electron volts (GeV), or some 35 billion times the energy of visible light, and about three times greater than the LAT's previous record. The GeV emission from the burst lasted for hours, and it remained detectable by the LAT for the better part of a day, setting a new record for the longest gamma-ray emission from a GRB.
A kilonova is a transient astronomical event that occurs in a compact binary system when two neutron stars or a neutron star and a black hole merge. These mergers are thought to produce gamma-ray bursts and emit bright electromagnetic radiation, called "kilonovae", due to the radioactive decay of heavy r-process nuclei that are produced and ejected fairly isotropically during the merger process. The measured high sphericity of the kilonova AT2017gfo at early epochs was deduced from the blackbody nature of its spectrum.
GW170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993, about 140 million light years away. The signal was produced by the last moments of the inspiral process of a binary pair of neutron stars, ending with their merger. It was the first GW observation to be confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW170817 were given the Breakthrough of the Year award for 2017 by the journal Science.
GRB 221009A was an extraordinarily bright and very energetic gamma-ray burst (GRB) jointly discovered by the Neil Gehrels Swift Observatory and the Fermi Gamma-ray Space Telescope on October 9, 2022. The gamma-ray burst was ten minutes long, but was detectable for more than ten hours following initial detection. Despite being around 2.4 billion light-years away, it was powerful enough to affect Earth's atmosphere, having the strongest effect ever recorded by a gamma-ray burst on the planet. The peak luminosity of GRB 221009A was measured by Konus-Wind to be ~ 2.1 × 1047 W and by Fermi Gamma-ray Burst Monitor to be ~ 1.0 × 1047 W over its 1.024s interval. A burst as energetic and as close to Earth as 221009A is thought to be a once-in-10,000-year event. It was the brightest and most energetic gamma-ray burst ever recorded, with some dubbing it the BOAT, or Brightest Of All Time.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: CS1 maint: multiple names: authors list (link)