Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Andromeda |
Right ascension | 01h 01m 08.907s [2] |
Declination | 43° 23′ 25.79″ [2] |
Apparent magnitude (V) | 13.7 to 17.3 [3] |
Characteristics | |
Spectral type | sdOB [4] |
Variable type | Z Cam(?) [3] |
Astrometry | |
Proper motion (μ) | RA: +2.471 mas/yr [2] Dec.: −5.904 mas/yr [2] |
Parallax (π) | 1.1413 ± 0.0326 mas [2] |
Distance | 2,860 ± 80 ly (880 ± 30 pc) |
Details | |
White dwarf | |
Mass | 0.75 [5] M☉ |
Radius | 0.015 [5] R☉ |
Temperature | 25,000 [5] K |
Donor star | |
Mass | 0.27 [5] M☉ |
Other designations | |
Database references | |
SIMBAD | data |
IW Andromedae is a binary star system in the northern constellation of Andromeda, abbreviated IW And. It is the prototype of a class of variable stars known as IW And variables, which is an anomalous sub-class of the Z Camelopardalis (Z Cam) variables. [7] The brightness of this system ranges from an apparent visual magnitude of 13.7 down to 17.3, [3] which requires a telescope to view. The system is located at a distance of approximately 2,860 light years from the Sun based on parallax measurements. [2]
The irregular variability of this star was discovered by L. Meinunger in 1975. [8] [9] The spectra was found to resemble a blue–hued OB star with some peculiarities. It is a confirmed cataclysmic variable (CV) but its properties differ markedly from other sub-classes of that type. [10] The photometric behavior of the star is dissimilar to that of a dwarf or polar nova as it shows rapid brightening of up to three magnitudes in periods of around a day, [11] but stays in a low excitement state about 72% of the time. [10] Evidence for weak emission of the hydrogen–alpha line was discovered by W. Liu and associates in 1999. [9]
This is a close binary system with an orbital period of 223 minutes (3.7 hours). The primary component is a white dwarf star with 75% of the mass of the Sun. The secondary component has 27% of the Sun's mass and is overflowing its Roche lobe, resulting in mass transfer to an accretion disk orbiting the primary. The accretion rate for the primary is 3×10−9 M☉·yr−1. [5]
T. Kato and associates in 2003 found the light curve matched a Z Cam variable, with the previously observed inactive states being caused by a characteristic standstill. The duty cycle of its standstill is unusually long for a variable of this class. [10] Outbursts during these standstills may be explained by flares on the secondary, which result in brief surges in mass transfer. [12]
Other variables displaying IW And–type behavior have since been discovered, including HO Puppis, [13] BC Cassiopeiae, [14] IM Eridani, V507 Cygni, and FY Vulpecula. [7]
V1494 Aquilae or Nova Aquilae 1999 b was a nova which occurred during 1999 in the constellation Aquila and reached a brightness of magnitude 3.9 on 2 December 1999. making it easily visible to the naked eye. The nova was discovered with 14×100 binoculars by Alfredo Pereira of Cabo da Roca, Portugal at 18:50 UT on 1 December 1999, when it had a visual magnitude of 6.0.
Pi Cassiopeiae, Latinized from π Cassiopeiae, is a close binary star system in the constellation Cassiopeia. It is visible to the naked eye with an apparent visual magnitude of +4.949. Based upon an annual parallax shift of 18.63 mas as seen from Earth, this system is located about 175 light years from the Sun.
AM Herculis is a binary variable star located in the constellation Hercules. This star, along with the star AN Ursae Majoris, is the prototype for a category of cataclysmic variable stars called polars, or AM Her type stars.
Z Andromedae is a binary star system consisting of a red giant and a white dwarf. It is the prototype of a type of cataclysmic variable star known as symbiotic variable stars or simply Z Andromedae variables. The brightness of those stars vary over time, showing a quiescent, more stable phase and then an active one with a more pronounced variability and stronger brightening and/or dimming.
WZ Sagittae is a cataclysmic dwarf nova star system in the constellation Sagitta. It consists of a white dwarf primary being orbited by a low mass companion. The white dwarf is about 0.85 solar masses while the companion is only 0.08 solar masses. This implies that the companion is a spectral class L2 star, although this has yet to be confirmed. The distance to this system has been determined by parallax, yielding a distance of 45.1 parsecs.
Z Camelopardalis (Z Cam) is a cataclysmic variable star system in the northern constellation of Camelopardalis. It has an apparent visual magnitude which varies between 9.8 and 14.5. This system is the prototype star for the family of Z Camelopardalis variable stars: dwarf novae with standstills at a brightness intermediate between their maxima and minima. It may be the same bright nova that was recorded by Chinese astrologers in the autumn of 77 BCE.
RX Andromedae is a variable star in the constellation of Andromeda. Although it is classified as a dwarf nova of the Z Camelopardalis (UGZ) type, it has shown low-luminosity periods typical of VY Sculptoris stars. However, for most of the time it varies from an apparent visual magnitude of 15.1 at minimum brightness to a magnitude of 10.2 at maximum brightness, with a period of approximately 13 days.
V803 Centauri is a cataclysmic binary consisting of a dwarf helium star losing mass to a white dwarf. It is an example of the AM Canum Venaticorum type of cataclysmic variable stars.
TZ Cassiopeiae(TZ Cas, HIP 117763, SAO 20912) is a variable star in the constellation Cassiopeia with an apparent magnitude of around +9 to +10. It is approximately 8,400 light-years away from Earth. The star is a red supergiant star with a spectral type of M3 and a temperature around 3,600 K.
AD Andromedae is an eclipsing binary in the constellation Andromeda. Its maximum apparent visual magnitude is 11.2, but it shows a decrease of 0.62 magnitudes during the main eclipse and 0.58 during the secondary one. It is classified as a Beta Lyrae variable star with a period of almost one day.
AR Andromedae is a dwarf nova of the SS Cygni type in the constellation Andromeda. Its typical apparent visual magnitude is 17.6, but increases up to 11.0 magnitude during outbursts. The outbursts occur approximately every 23 days.
DX Andromedae is a cataclysmic variable star in the constellation Andromeda. It has a typical apparent visual magnitude of 15.5 during the quiescent phase, but becomes brighter during outbursts recurring with a mean cycle length of 330 days, thus is classified as a dwarf nova of the SS Cygni type.
LL Andromedae is a dwarf nova in the constellation Andromeda, discovered during an outburst in 1979. Its typical apparent visual magnitude is 19.4, but undergoes outbursts events when can reach a peak magnitude of 14.3. Since this magnitude is reached during the most powerful outbursts, while less bright outbursts can occur, it is classified as a SU Ursae Majoris variable.
PX Andromedae is an eclipsing cataclysmic variable star in the constellation Andromeda. It has been classified as a SW Sextantis variable, and its apparent visual magnitude varies between 14.04 and 17.
V455 Andromedae is a dwarf nova in the constellation Andromeda. It has a typical apparent visual magnitude of 16.5, but reached a magnitude of 8.5 during the only observed outburst.
BZ Ursae Majoris is a dwarf nova star system in the northern circumpolar constellation of Ursa Major. It consists of a white dwarf primary in a close orbit with a red dwarf. The latter star is donating mass, which is accumulating in an accretion disk orbiting the white dwarf. The system is located at a distance of approximately 505 light years from the Sun based on parallax measurements.
RZ Leonis Minoris is a cataclysmic variable star system in the northern constellation of Leo Minor. It undergoes frequent outbursts that vary in brightness from an apparent visual magnitude of 14.4 down to 16.8. Based on parallax measurements, this system is located at a distance of approximately 2,160 light years from the Sun.
ER Ursae Majoris is a variable star in the northern circumpolar constellation of Ursa Major, abbreviated ER UMa. It is a prototype system for a subclass of SU Ursae Majoris dwarf novae. The system ranges in brightness from a peak apparent visual magnitude of 12.4 down to 15.2, which is too faint to be visible to the naked eye. The distance to this system, based on parallax measurements, is approximately 1,163 light years.
CR Boötis is an interacting binary system in the northern constellation of Boötes, abbreviated CR Boo. It is one of the best-known AM Canum Venaticorum stars. The system varies widely in brightness, ranging in apparent visual magnitude from 13.6 down to 17.5. The distance to this system is approximately 1,150 light years from the Sun, based on parallax measurements.
YY Draconis and DO Draconis are separate identifiers for what is likely the same cataclysmic variable system in the northern constellation of Draco, abbreviated YY Dra and DO Dra, respectively. The DO Dra binary star system is classified as a U Geminorum variable that ranges in luminosity from an apparent visual magnitude of 10.0 down to 15.1. It is located at a distance of approximately 639 light years from the Sun.