Variational principle

Last updated

In science and especially in mathematical studies, a variational principle is one that enables a problem to be solved using calculus of variations, which concerns finding functions that optimize the values of quantities that depend on those functions. For example, the problem of determining the shape of a hanging chain suspended at both ends—a catenary—can be solved using variational calculus, and in this case, the variational principle is the following: The solution is a function that minimizes the gravitational potential energy of the chain.

Contents

History

Physics

The history of the variational principle in classical mechanics started with Maupertuis's principle in the 18th century.

Math

Felix Klein's 1872 Erlangen program attempted to identify invariants under a group of transformations.

Examples

In mathematics

In physics

Related Research Articles

<span class="mw-page-title-main">Physics</span> Scientific field of study

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. A scientist who specializes in the field of physics is called a physicist.

The following outline is provided as an overview of and topical guide to physics:

In physics, quantisation is the systematic transition procedure from a classical understanding of physical phenomena to a newer understanding known as quantum mechanics. It is a procedure for constructing quantum mechanics from classical mechanics. A generalization involving infinite degrees of freedom is field quantization, as in the "quantization of the electromagnetic field", referring to photons as field "quanta". This procedure is basic to theories of atomic physics, chemistry, particle physics, nuclear physics, condensed matter physics, and quantum optics.

In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles.

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics.

The stationary-action principle – also known as the principle of least action – is a variational principle that, when applied to the action of a mechanical system, yields the equations of motion for that system. The principle states that the trajectories are stationary points of the system's action functional.

In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. Action and the variational principle are used in Feynman's quantum mechanics and in general relativity. For systems with small values of action similar Planck's constant, quantum effects are significant.

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related formulations of classical mechanics. Analytical mechanics uses scalar properties of motion representing the system as a whole—usually its kinetic energy and potential energy. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

The Wheeler–Feynman absorber theory, named after its originators, the physicists, Richard Feynman, and John Archibald Wheeler, is a theory of electrodynamics based on a relativistic correct extension of action at a distance electron particles. The theory postulates no independent field.

In physics, mechanics is the study of objects, their interaction, and motion; classical mechanics is mechanics limited to non-relativistic and non-quantum approximations. Most of the techniques of classical mechanics were developed before 1900 so the term classical mechanics refers to that historical era as well as the approximations. Other fields of physics that were developed in the same era, that use the same approximations, and are also considered "classical" include thermodynamics and electromagnetism.

In physics, a variational principle is an alternative method for determining the state or dynamics of a physical system, by identifying it as an extremum of a function or functional. Variational methods are exploited in many modern software to simulate matter and light.

<span class="mw-page-title-main">Classical mechanics</span> Description of large objects physics

Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. The "classical" in "classical mechanics" does not refer to classical antiquity, as it might in, say, classical architecture. On the contrary, the development of classical mechanics involved substantial change in the methods and philosophy of physics. Instead, the qualifier distinguishes classical mechanics from physics developed after the revolutions of the early 20th century, which revealed limitations of classical mechanics.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

<span class="mw-page-title-main">Branches of physics</span> Overview of the branches of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

<i>The Feynman Lectures on Physics</i> Textbook by Richard Feynman

The Feynman Lectures on Physics is a physics textbook based on a great number of lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands.

<span class="mw-page-title-main">Ivar Ekeland</span> French mathematician

Ivar I. Ekeland is a French mathematician of Norwegian descent. Ekeland has written influential monographs and textbooks on nonlinear functional analysis, the calculus of variations, and mathematical economics, as well as popular books on mathematics, which have been published in French, English, and other languages. Ekeland is known as the author of Ekeland's variational principle and for his use of the Shapley–Folkman lemma in optimization theory. He has contributed to the periodic solutions of Hamiltonian systems and particularly to the theory of Kreĭn indices for linear systems. Ekeland helped to inspire the discussion of chaos theory in Michael Crichton's 1990 novel Jurassic Park.

<span class="mw-page-title-main">Hamilton's optico-mechanical analogy</span>

Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.

References