Variational quantum eigensolver

Last updated

In quantum computing, the variational quantum eigensolver (VQE) is a quantum algorithm for quantum chemistry, quantum simulations and optimization problems. It is a hybrid algorithm that uses both classical computers and quantum computers to find the ground state of a given physical system. Given a guess or ansatz, the quantum processor calculates the expectation value of the system with respect to an observable, often the Hamiltonian, and a classical optimizer is used to improve the guess. The algorithm is based on the variational method of quantum mechanics.

Contents

It was originally proposed in 2014, with corresponding authors Alberto Peruzzo, Alán Aspuru-Guzik and Jeremy O'Brien. [lower-alpha 1] [1] [2] The algorithm has also found applications in quantum machine learning and has been further substantiated by general hybrid algorithms between quantum and classical computers. [3] It is an example of a noisy intermediate-scale quantum (NISQ) algorithm.

Description

Pauli encoding

The objective of the VQE is to find a set of quantum operations that prepares the lowest energy state (or minima) of a close approximation to some target quantity or observable. While the only strict requirement for the representation of an observable is that it is efficient to estimate its expectation values, it is often simplest if that operator has a compact or simple expression in terms of Pauli operators or tensor products of Pauli operators.

For a fermionic system, it is often most convenient to qubitize: that is to write the many-body Hamiltonian of the system using second quantization, and then use a mapping to write the creation-annihiliation operators in terms of Pauli operators. Common schemes for fermions include Jordan–Wigner transformation, Bravyi-Kitaev transformation, and parity transformation. [4] [5]

Once the Hamiltonian is written in terms of Pauli operators and irrelevant states are discarded (finite-dimensional space), it would consist of a linear combination of Pauli strings consisting of tensor products of Pauli operators (for example ), such that

,

where are numerical coefficients. Based on the coefficients, the number of Pauli strings can be reduced in order to optimize the calculation. [6]

The VQE can be adapted to other optimization problems by adapting the Hamiltonian to be a cost function. [7]

Ansatz and initial trial function

The choice of ansatz state depends on the system of interest. In gate-based quantum computing, the ansatz is given by a parametrized quantum circuit, whose parameters can be updated after each run. The ansatz has to be adaptable enough to not miss the desired state. A common method to obtain a valid ansatz is given by the unitary coupled cluster (UCC) framework and its extensions. [8]

If the ansatz is not chosen adequately the procedure may halt at suboptimal parameters that do not correspond to a minima. In this situation, the algorithm is said to have reached a 'barren plateau'. [5]

The ansatz can be set to an initial trial function to start the algorithm. For example, for a molecular system, one can use the Hartree–Fock method to provide a starting state that is close to the real ground state.

Measurement

The expectation value of a given state with parameters , has an expectation value of the energy or cost function given by

so in order to obtain the expectation value of the energy, one can measure the expectation value of each Pauli string (number of counts for a given value over the total number of counts). This step corresponds to measuring each qubit in the axis provided by the Pauli string. [7] For example, for the string , the first qubit is to be measured in the x-axis, while the last two are to be measured in the y-axis of the Bloch sphere. If measurement in the z-axis is only possible, then Clifford gates can be used to transform between axes. If two Pauli strings commute, then they can be both measured simultaneously using the same circuit and interpreting the result according to the Pauli algebra.

Variational method and optimization

Given a parametrized ansatz for the ground state eigenstate, with parameters that can be modified, one is sure to find the parametrized state that is closest to the ground state based on the variational method of quantum mechanics. Using classical algorithms in a digital computer, the parameters of the ansatz can be optimized. For this minimization, it is necessary to find the minima of a multivariable function. Classical optimizers using gradient descent can be used for this purpose. [7]

By running the circuit many times and constantly updating the parameters to find the global minima of the expectation value of the desired observable, one can approach the ground state of the given system and store it in a quantum processor as a series of quantum gate instructions.

Use

In chemistry

As of 2022, the variational quantum eigensolver can only simulate small molecules like the helium hydride ion [1] or the beryllium hydride molecule. [9] Larger molecules can be simulated by taking into account symmetry considerations. In 2020, a 12-qubit simulation of a hydrogen chain (H12) was demonstrated using Google's Sycamore quantum processor. [10]

See also

Notes

  1. Full authors: Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alan Aspuru-Guzik and Jeremy L. O’Brien. All equally contributing.

Related Research Articles

Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. It is essential because, apart from relatively recent results concerning the hydrogen molecular ion, the quantum many-body problem cannot be solved analytically, much less in closed form. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict hitherto unobserved chemical phenomena. It is widely used in the design of new drugs and materials.

In quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer. Although all classical algorithms can also be performed on a quantum computer, the term quantum algorithm is usually used for those algorithms which seem inherently quantum, or use some essential feature of quantum computation such as quantum superposition or quantum entanglement.

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.

Superconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs utilize superconducting architecture.

The Clifford group encompasses a set of quantum operations that map the set of n-fold Pauli group products into itself. It is most famously studied for its use in quantum error correction.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way or measurement-based quantum computer (MBQC) is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity.

In quantum computing, the quantum phase estimation algorithm is a quantum algorithm to estimate the phase corresponding to an eigenvalue of a given unitary operator. Because the eigenvalues of a unitary operator always have unit modulus, they are characterized by their phase, and therefore the algorithm can be equivalently described as retrieving either the phase or the eigenvalue itself. The algorithm was initially introduced by Alexei Kitaev in 1995.

Linear optical quantum computing or linear optics quantum computation (LOQC) is a paradigm of quantum computation, allowing universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

The Harrow–Hassidim–Loyd algorithm or HHL algorithm is a quantum algorithm for numerically solving a system of linear equations, designed by Aram Harrow, Avinatan Hassidim, and Seth Lloyd. The algorithm estimates the result of a scalar measurement on the solution vector to a given linear system of equations.

The KLM scheme or KLM protocol is an implementation of linear optical quantum computing (LOQC), developed in 2000 by Emanuel Knill, Raymond Laflamme, and Gerard J. Milburn. This protocol allows for the creation of universal quantum computers using solely linear optical tools. The KLM protocol uses linear optical elements, single-photon sources, and photon detectors as resources to construct a quantum computation scheme involving only ancilla resources, quantum teleportations, and error corrections.

Quantum counting algorithm is a quantum algorithm for efficiently counting the number of solutions for a given search problem. The algorithm is based on the quantum phase estimation algorithm and on Grover's search algorithm.

Quil is a quantum instruction set architecture that first introduced a shared quantum/classical memory model. It was introduced by Robert Smith, Michael Curtis, and William Zeng in A Practical Quantum Instruction Set Architecture. Many quantum algorithms require a shared memory architecture. Quil is being developed for the superconducting quantum processors developed by Rigetti Computing through the Forest quantum programming API. A Python library called pyQuil was introduced to develop Quil programs with higher level constructs. A Quil backend is also supported by other quantum programming environments.

Quantum Signal Processing is a Hamiltonian simulation algorithm with optimal lower bounds in query complexity. It linearizes the operator of a quantum walk using eigenvalue transformation. The quantum walk takes a constant number of queries. So quantum signal processing's cost depends on the constant number of calls to the quantum walk operator, number of single qubit quantum gates that aid in the eigenvalue transformation and an ancilla qubit.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information of a state with respect to the observable is defined as

Quantum artificial life is the application of quantum algorithms with the ability to simulate biological behavior. Quantum computers offer many potential improvements to processes performed on classical computers including machine learning and artificial intelligence. Artificial intelligence applications are often inspired by our own brains; this is a form of biomimicry. This can and has been implemented to a certain extent on classical computers, but quantum computers offer many advantages in the simulation of artificial life. Artificial life and artificial intelligence are extremely similar but their ambitions differ; the goal of studying artificial life is to understand living beings better, while the goal of artificial intelligence is to create intelligent beings.

A spin chain is a type of model in statistical physics. Spin chains were originally formulated to model magnetic systems, which typically consist of particles with magnetic spin located at fixed sites on a lattice. A prototypical example is the quantum Heisenberg model. Interactions between the sites are modelled by operators which act on two different sites, often neighboring sites.

References

  1. 1 2 Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L. (2014). "A variational eigenvalue solver on a photonic quantum processor". Nature Communications. 5 (1): 4213. arXiv: 1304.3061 . Bibcode:2014NatCo...5.4213P. doi:10.1038/ncomms5213. ISSN   2041-1723. PMC   4124861 . PMID   25055053.
  2. Bharti, Kishor; Cervera-Lierta, Alba; Kyaw, Thi Ha; Haug, Tobias; Alperin-Lea, Sumner; Anand, Abhinav; Degroote, Matthias; Heimonen, Hermanni; Kottmann, Jakob S.; Menke, Tim; Mok, Wai-Keong; Sim, Sukin; Kwek, Leong-Chuan; Aspuru-Guzik, Alán (2022-02-15). "Noisy intermediate-scale quantum algorithms". Reviews of Modern Physics. 94 (1): 015004. doi:10.1103/RevModPhys.94.015004. hdl: 10356/161272 .
  3. McClean, Jarrod R; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán (2016-02-04). "The theory of variational hybrid quantum-classical algorithms". New Journal of Physics. 18 (2): 023023. doi: 10.1088/1367-2630/18/2/023023 . ISSN   1367-2630. S2CID   92988541.
  4. Steudtner, M (2019). Methods to simulate fermions on quantum computers with hardware limitations (PhD Thesis). University of Leiden.
  5. 1 2 Tilly, Jules; Chen, Hongxiang; Cao, Shuxiang; Picozzi, Dario; Setia, Kanav; Li, Ying; Grant, Edward; Wossnig, Leonard; Rungger, Ivan; Booth, George H.; Tennyson, Jonathan (2022-06-12). "The Variational Quantum Eigensolver: A review of methods and best practices". Physics Reports. 986: 1–128. arXiv: 2111.05176 . doi:10.1016/j.physrep.2022.08.003. S2CID   243861087.
  6. Seeley, Jacob T.; Richard, Martin J.; Love, Peter J. (2012-12-12). "The Bravyi-Kitaev transformation for quantum computation of electronic structure". The Journal of Chemical Physics. 137 (22): 224109. arXiv: 1208.5986 . Bibcode:2012JChPh.137v4109S. doi:10.1063/1.4768229. ISSN   0021-9606. PMID   23248989. S2CID   30699239.
  7. 1 2 3 Moll, Nikolaj; Barkoutsos, Panagiotis; Bishop, Lev S; Chow, Jerry M; Cross, Andrew; Egger, Daniel J; Filipp, Stefan; Fuhrer, Andreas; Gambetta, Jay M; Ganzhorn, Marc; Kandala, Abhinav; Mezzacapo, Antonio; Müller, Peter; Riess, Walter; Salis, Gian (2018). "Quantum optimization using variational algorithms on near-term quantum devices". Quantum Science and Technology. 3 (3): 030503. arXiv: 1710.01022 . Bibcode:2018QS&T....3c0503M. doi:10.1088/2058-9565/aab822. ISSN   2058-9565. S2CID   56376912.
  8. Tilly, Jules; Chen, Hongxiang; Cao, Shuxiang; Picozzi, Dario; Setia, Kanav; Li, Ying; Grant, Edward; Wossnig, Leonard; Rungger, Ivan; Booth, George H.; Tennyson, Jonathan (2022-06-12). "The Variational Quantum Eigensolver: A review of methods and best practices". Physics Reports. 986: 1–128. arXiv: 2111.05176 . doi:10.1016/j.physrep.2022.08.003. S2CID   243861087.
  9. Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Takita, Maika; Brink, Markus; Chow, Jerry M.; Gambetta, Jay M. (2017). "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets". Nature. 549 (7671): 242–246. arXiv: 1704.05018 . Bibcode:2017Natur.549..242K. doi:10.1038/nature23879. ISSN   1476-4687. PMID   28905916. S2CID   4390182.
  10. Arute, Frank; Arya, Kunal; Babbush, Ryan; et al. (2020). "Hartree-Fock on a superconducting qubit quantum computer". Science. 369 (6507): 1084–1089. arXiv: 2004.04174 . Bibcode:2020Sci...369.1084.. doi:10.1126/science.abb9811. ISSN   0036-8075. PMID   32855334. S2CID   215548188.