Flux qubit

Last updated

In quantum computing, more specifically in superconducting quantum computing, flux qubits (also known as persistent current qubits) are micrometer sized loops of superconducting metal that is interrupted by a number of Josephson junctions. These devices function as quantum bits. The flux qubit was first proposed by Terry P. Orlando et al. at MIT in 1999 and fabricated shortly thereafter. [1] During fabrication, the Josephson junction parameters are engineered so that a persistent current will flow continuously when an external magnetic flux is applied. Only an integer number of flux quanta are allowed to penetrate the superconducting ring, resulting in clockwise or counter-clockwise mesoscopic supercurrents (typically 300 nA [2] ) in the loop to compensate (screen or enhance) a non-integer external flux bias. When the applied flux through the loop area is close to a half integer number of flux quanta, the two lowest energy eigenstates of the loop will be a quantum superposition of the clockwise and counter-clockwise currents. The two lowest energy eigenstates differ only by the relative quantum phase between the composing current-direction states. Higher energy eigenstates correspond to much larger (macroscopic) persistent currents, that induce an additional flux quantum to the qubit loop, thus are well separated energetically from the lowest two eigenstates. This separation, known as the "qubit non linearity" criteria, allows operations with the two lowest eigenstates only, effectively creating a two level system. Usually, the two lowest eigenstates will serve as the computational basis for the logical qubit.

Contents

SEM image of a 4-junction flux qubit fabricated at Royal Holloway University of London Flux Qubit - Holloway.jpg
SEM image of a 4-junction flux qubit fabricated at Royal Holloway University of London

Computational operations are performed by pulsing the qubit with microwave frequency radiation which has an energy comparable to that of the gap between the energy of the two basis states, similar to RF-SQUID. Properly selected pulse duration and strength can put the qubit into a quantum superposition of the two basis states while subsequent pulses can manipulate the probability weighting that the qubit will be measured in either of the two basis states, thus performing a computational operation.

Fabrication

Flux qubits are fabricated using techniques similar to those used for microelectronics. The devices are usually made on silicon or sapphire wafers using electron beam lithography and metallic thin film evaporation processes. To create Josephson junctions, a technique known as shadow evaporation is normally used; this involves evaporating the source metal alternately at two angles through the lithography defined mask in the electron beam resist. This results in two overlapping layers of the superconducting metal, in between which a thin layer of insulator (normally aluminum oxide) is deposited. [3]

Dr. Shcherbakova's group reported using niobium as the contacts for their flux qubits. Niobium is often used as the contact and is deposited by employing a sputtering technique and using optical lithography to pattern the contacts. An argon beam can then be used to reduce the oxide layer that forms on top of the contacts. The sample must be cooled during the etching process in order to keep the niobium contacts from melting. At this point, the aluminum layers can be deposited on top of the clean niobium surfaces. The aluminum is then deposited in two steps from alternating angles on the niobium contacts. An oxide layer forms between the two aluminum layers in order to create the Al/AlOx/Al Josephson junction. [3] In standard flux qubits, 3 or 4 Josephson junctions will be patterned around the loop.

Resonators can be fabricated to measure the readout of the flux qubit through a similar techniques. The resonator can be fabricated by e-beam lithography and CF4 reactive ion etching of thin films of niobium or a similar metal. The resonator could then be coupled to the flux qubit by fabricating the flux qubit at the end of the resonator. [4]

Flux Qubit Parameters

The flux qubit is distinguished from other known types of superconducting qubit such as the charge qubit or phase qubit by the coupling energy and charging energy of its junctions. In the charge qubit regime the charging energy of the junctions dominates the coupling energy. In a Flux qubit the situation is reversed and the coupling energy dominates. Typically for a flux qubit the coupling energy is 10-100 times greater than the charging energy which allows the Cooper pairs to flow continuously around the loop, rather than tunnel discretely across the junctions like a charge qubit.

Josephson Junctions

In order for a superconducting circuit to function as a qubit, there needs to be a non-linear element. If the circuit has a harmonic oscillator, such as in an LC-circuit, the energy levels are degenerate. This prohibits the formation of a two qubit computational space because any microwave radiation that is applied to manipulate the ground state and the first excited state to perform qubit operations would also excite the higher energy states. Josephson junctions are the only electronic element that are non-linear as well as non-dissipative at low temperatures [ citation needed ]. These are requirements for quantum integrated circuits, making the Josephson junction essential in the construction of flux qubits. [5] Understanding the physics of the Josephson junction will improve comprehension of how flux qubits operate.

Essentially, Josephson junctions consist of two pieces of superconducting thin film that are separated by a layer of insulator. In the case of flux qubits, Josephson junctions are fabricated by the process that is described above. The wave functions of the superconducting components overlap, and this construction allows for the tunneling of electrons which creates a phase difference between the wave functions on either side of the insulating barrier. [5] This phase difference that is equivalent to , where correspond to the wave functions on either side of the tunneling barrier. For this phase difference, the following Josephson relations have been established:

[6]

[6]

Here, is the Josephson current and is the flux quantum. By differentiating the current equation and using substitution, one obtains the Josephson inductance term :

[6]

From these equations, it can be seen that the Josephson inductance term is non-linear from the cosine term in the denominator; because of this, the energy level spacings are no longer degenerate, restricting the dynamics of the system to the two qubit states. Because of the non-linearity of the Josephson junction, operations using microwaves can be performed on the two lowest energy eigenvalue states (the two qubit states) without exciting the higher energy states. This was previously referred to as the "qubit non linearity" criteria. Thus, Josephson junctions are an integral element of flux qubits and superconducting circuits in general.

Coupling

Coupling between two or more qubits is essential to implement many-qubit gates. The two basic coupling mechanisms are the direct inductive coupling and coupling via a microwave resonator. In the direct coupling, the circulating currents of the qubits inductively affect one another - clockwise current in one qubit induces counter-clockwise current in the other. In the Pauli Matrices formalism, a σzσz term appears in the Hamiltonian, essential for the controlled NOT gate implementation. [7] The direct coupling might be further enhanced by kinetic inductance, if the qubit loops are made to share an edge, so that the currents will flow through the same superconducting line. Inserting a Josephson junction on that joint line will add a Josephson inductance term, and increase the coupling even more. To implement a switchable coupling in the direct coupling mechanism, as required to implement a gate of finite duration, an intermediate coupling loop may be used. The control magnetic flux applied to the coupler loop switches the coupling on and off, as implemented, for example, in the D-Wave Systems machines. The second method of coupling uses an intermediate microwave cavity resonator, commonly implemented in a coplanar waveguide geometry. By tuning the energy separation of the qubits to match the one of the resonator, the phases of the loop currents are synchronized, and a σxσx coupling is implemented. Tuning the qubits in and out of resonance (for example, by modifying their bias magnetic flux) controls the duration of the gate operation.

Readout

Like all quantum bits, flux qubits require a suitably sensitive probe coupled to it in order to measure its state after a computation has been carried out. Such quantum probes should introduce as little back-action as possible onto the qubit during measurement. Ideally they should be decoupled during computation and then turned "on" for a short time during read-out. Read-out probes for flux qubits work by interacting with one of the qubit's macroscopic variables, such as the circulating current, the flux within the loop or the macroscopic phase of the superconductor. This interaction then changes some variable of the read-out probe which can be measured using conventional low-noise electronics. The read-out probe is typically the technology aspect that separates the research of different University groups working on flux qubits.

Prof. Mooij's group at Delft in the Netherlands, [2] along with collaborators, has pioneered flux qubit technology, and were the first to conceive, propose and implement flux qubits as they are known today. The Delft read-out scheme is based on a SQUID loop that is inductively coupled to the qubit, the qubit's state influences the critical current of the SQUID. The critical current can then be read-out using ramped measurement currents through the SQUID. Recently the group has used the plasma frequency of the SQUID as the read-out variable.

Dr. Il'ichev's group at IPHT Jena in Germany [8] are using impedance measurement techniques based on the flux qubit influencing the resonant properties of a high quality tank circuit, which, like the Delft group is also inductively coupled to the qubit. In this scheme the qubit's magnetic susceptibility, which is defined by its state, changes the phase angle between the current and voltage when a small A.C. signal is passed into the tank circuit.

Prof. Petrashov's group at Royal Holloway [9] are using an Andreev interferometer probe to read out flux qubits. [10] [11] This read-out uses the phase influence of a superconductor on the conductance properties of a normal metal. A length of normal metal is connected at either end to either side of the qubit using superconducting leads, the phase across the qubit, which is defined by its state, is translated into the normal metal, the resistance of which is then read-out using low noise resistance measurements.

Dr. Jerger's group uses resonators that are coupled with the flux qubit. Each resonator is dedicated to just one qubit, and all resonators can be measured with a single transmission line. The state of the flux qubit alters the resonant frequency of the resonator due to a dispersive shift that is picked up by the resonator from the coupling with the flux qubit. The resonant frequency is then measured by the transmission line for each resonator in the circuit. The state of the flux qubit is then determined by the measured shift in the resonant frequency. [4]

Related Research Articles

<span class="mw-page-title-main">SQUID</span> Type of magnetometer

A SQUID is a very sensitive magnetometer used to measure extremely weak magnetic fields, based on superconducting loops containing Josephson junctions.

The magnetic flux, represented by the symbol Φ, threading some contour or loop is defined as the magnetic field B multiplied by the loop area S, i.e. Φ = BS. Both B and S can be arbitrary, meaning Φ can be as well. However, if one deals with the superconducting loop or a hole in a bulk superconductor, the magnetic flux threading such a hole/loop is quantized. The (superconducting) magnetic flux quantumΦ0 = h/(2e)2.067833848...×10−15 Wb is a combination of fundamental physical constants: the Planck constant h and the electron charge e. Its value is, therefore, the same for any superconductor. The phenomenon of flux quantization was discovered experimentally by B. S. Deaver and W. M. Fairbank and, independently, by R. Doll and M. Näbauer, in 1961. The quantization of magnetic flux is closely related to the Little–Parks effect, but was predicted earlier by Fritz London in 1948 using a phenomenological model.

<span class="mw-page-title-main">Josephson effect</span> Quantum physical phenomenon

In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. The effect is named after the British physicist Brian Josephson, who predicted in 1962 the mathematical relationships for the current and voltage across the weak link. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mechanics are observable at ordinary, rather than atomic, scale. The Josephson effect has many practical applications because it exhibits a precise relationship between different physical measures, such as voltage and frequency, facilitating highly accurate measurements.

<span class="mw-page-title-main">Charge qubit</span> Superconducting qubit implementation

In quantum computing, a charge qubit is a qubit whose basis states are charge states. In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction to a superconducting reservoir. The state of the qubit is determined by the number of Cooper pairs that have tunneled across the junction. In contrast with the charge state of an atomic or molecular ion, the charge states of such an "island" involve a macroscopic number of conduction electrons of the island. The quantum superposition of charge states can be achieved by tuning the gate voltage U that controls the chemical potential of the island. The charge qubit is typically read-out by electrostatically coupling the island to an extremely sensitive electrometer such as the radio-frequency single-electron transistor.

Superconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs use superconducting architecture.

In physics, a fluxon is a quantum of electromagnetic flux. The term may have any of several related meanings.

A Josephson junction (JJ) is a quantum mechanical device which is made of two superconducting electrodes separated by a barrier. A π Josephson junction is a Josephson junction in which the Josephson phase φ equals π in the ground state, i.e. when no external current or magnetic field is applied.

In a standard superconductor, described by a complex field fermionic condensate wave function, vortices carry quantized magnetic fields because the condensate wave function is invariant to increments of the phase by . There a winding of the phase by creates a vortex which carries one flux quantum. See quantum vortex.

<span class="mw-page-title-main">Scanning SQUID microscopy</span> Method of imaging magnetic fields at microscopic scales

In condensed matter physics, scanning SQUID microscopy is a technique where a superconducting quantum interference device (SQUID) is used to image surface magnetic field strength with micrometre-scale resolution. A tiny SQUID is mounted onto a tip which is then rastered near the surface of the sample to be measured. As the SQUID is the most sensitive detector of magnetic fields available and can be constructed at submicrometre widths via lithography, the scanning SQUID microscope allows magnetic fields to be measured with unparalleled resolution and sensitivity. The first scanning SQUID microscope was built in 1992 by Black et al. Since then the technique has been used to confirm unconventional superconductivity in several high-temperature superconductors including YBCO and BSCCO compounds.

In quantum computing, and more specifically in superconducting quantum computing, the phase qubit is a superconducting device based on the superconductor–insulator–superconductor (SIS) Josephson junction, designed to operate as a quantum bit, or qubit.

The superconducting tunnel junction (STJ) — also known as a superconductor–insulator–superconductor tunnel junction (SIS) — is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Current passes through the junction via the process of quantum tunneling. The STJ is a type of Josephson junction, though not all the properties of the STJ are described by the Josephson effect.

An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.

<span class="mw-page-title-main">Transmon</span> Superconducting qubit implementation

In quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin, and their colleagues at Yale University in 2007. Its name is an abbreviation of the term transmission line shunted plasma oscillation qubit; one which consists of a Cooper-pair box "where the two superconductors are also [capacitively] shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control".

Macroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect and topological order. Since 2000 there has been extensive experimental work on quantum gases, particularly Bose–Einstein condensates.

Linear optical quantum computing or linear optics quantum computation (LOQC), also photonic quantum computing (PQC), is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

A φ Josephson junction is a particular type of the Josephson junction, which has a non-zero Josephson phase φ across it in the ground state. A π Josephson junction, which has the minimum energy corresponding to the phase of π, is a specific example of it.

Superconducting logic refers to a class of logic circuits or logic gates that use the unique properties of superconductors, including zero-resistance wires, ultrafast Josephson junction switches, and quantization of magnetic flux (fluxoid). As of 2023, superconducting computing is a form of cryogenic computing, as superconductive electronic circuits require cooling to cryogenic temperatures for operation, typically below 10 kelvin. Often superconducting computing is applied to quantum computing, with an important application known as superconducting quantum computing.

References

  1. Orlando, T. P.; Mooij, J. E.; Tian, Lin; Van Der Wal, Caspar H.; Levitov, L. S.; Lloyd, Seth; Mazo, J. J. (1999). "Superconducting persistent-current qubit". Physical Review B. 60 (22): 15398–15413. arXiv: cond-mat/9908283 . Bibcode:1999PhRvB..6015398O. doi:10.1103/PhysRevB.60.15398. S2CID   16093985.
  2. 1 2 University of Delft - Flux Qubit Website Archived 2008-03-01 at archive.today
  3. 1 2 Shcherbakova, A V (13 January 2015). "Fabrication and measurements of hybrid Nb/Al Josephson junctions and flux qubits with π-shifters". Superconductor Science and Technology. 28 (2): 025009. arXiv: 1405.0373 . Bibcode:2015SuScT..28b5009S. doi:10.1088/0953-2048/28/2/025009. S2CID   118577242.
  4. 1 2 Jerger, M.; Poletto, S.; Macha, P.; Hübner, U.; Lukashenko, A.; Il\textquotesingleichev, E.; Ustinov, A. V. (November 2011). "Readout of a qubit array via a single transmission line". EPL (Europhysics Letters). 96 (4): 40012. arXiv: 1102.0404 . Bibcode:2011EL.....9640012J. doi:10.1209/0295-5075/96/40012. ISSN   0295-5075. S2CID   59796640.
  5. 1 2 Devoret, M. & Wallraff, Andreas & Martinis, J.M.. (2004). Superconducting Qubits: A Short Review.
  6. 1 2 3 Martinis, John & Osborne, Kevin. Superconducting Qubits and the Physics of Josephson Junctins. Les Houches, 2004.
  7. Nielsen, Michael A.; Chuang, Isaac L. (2000). Quantum Computation and Quantum Information. Cambridge University Press. ISBN   0-521-63235-8.
  8. University of Jena - Flux Qubit Website Archived February 14, 2007, at the Wayback Machine
  9. Royal Holloway University of London - Flux Qubit Website
  10. Checkley, C.; Iagallo, A.; Shaikhaidarov, R.; Nicholls, J. T.; Petrashov, V. T. (2011-04-06). "Andreev Interferometers in a Strong Radio Frequency Field". Journal of Physics: Condensed Matter. 23 (13): 135301. arXiv: 1003.2785 . Bibcode:2011JPCM...23m5301C. doi:10.1088/0953-8984/23/13/135301. ISSN   0953-8984. PMID   21403240. S2CID   24551976.
  11. Petrashov, V. T.; Chua, K. G.; Marshall, K. M.; Shaikhaidarov, R. Sh; Nicholls, J. T. (2005-09-27). "Andreev Probe of Persistent Current States in Superconducting Quantum Circuits". Physical Review Letters. 95 (14): 147001. arXiv: cond-mat/0503061 . Bibcode:2005PhRvL..95n7001P. doi:10.1103/PhysRevLett.95.147001. ISSN   0031-9007. PMID   16241686. S2CID   963004.