Entanglement-assisted stabilizer formalism

Last updated

In the theory of quantum communication, the entanglement-assisted stabilizer formalism is a method for protecting quantum information with the help of entanglement shared between a sender and receiver before they transmit quantum data over a quantum communication channel. It extends the standard stabilizer formalism by including shared entanglement (Brun et al. 2006). The advantage of entanglement-assisted stabilizer codes is that the sender can exploit the error-correcting properties of an arbitrary set of Pauli operators. The sender's Pauli operators do not necessarily have to form an Abelian subgroup of the Pauli group over qubits. The sender can make clever use of her shared ebits so that the global stabilizer is Abelian and thus forms a valid quantum error-correcting code.

Contents

Definition

We review the construction of an entanglement-assisted code (Brun et al. 2006). Suppose that there is a nonabelian subgroup of size . Application of the fundamental theorem of symplectic geometry (Lemma 1 in the first external reference) states that there exists a minimal set of independent generators for with the following commutation relations:

The decomposition of into the above minimal generating set determines that the code requires ancilla qubits and ebits. The code requires an ebit for every anticommuting pair in the minimal generating set. The simple reason for this requirement is that an ebit is a simultaneous -eigenstate of the Pauli operators . The second qubit in the ebit transforms the anticommuting pair into a commuting pair . The above decomposition also minimizes the number of ebits required for the code---it is an optimal decomposition.

We can partition the nonabelian group into two subgroups: the isotropic subgroup and the entanglement subgroup . The isotropic subgroup is a commuting subgroup of and thus corresponds to ancilla qubits:

.

The elements of the entanglement subgroup come in anticommuting pairs and thus correspond to ebits:

.

Entanglement-assisted stabilizer code error correction conditions

The two subgroups and play a role in the error-correcting conditions for the entanglement-assisted stabilizer formalism. An entanglement-assisted code corrects errors in a set if for all ,

Operation

The operation of an entanglement-assisted code is as follows. The sender performs an encoding unitary on her unprotected qubits, ancilla qubits, and her half of the ebits. The unencoded state is a simultaneous +1-eigenstate of the following Pauli operators:

The Pauli operators to the right of the vertical bars indicate the receiver's half of the shared ebits. The encoding unitary transforms the unencoded Pauli operators to the following encoded Pauli operators:

The sender transmits all of her qubits over the noisy quantum channel. The receiver then possesses the transmitted qubits and his half of the ebits. He measures the above encoded operators to diagnose the error. The last step is to correct the error.

Rate of an entanglement-assisted code

We can interpret the rate of an entanglement-assisted code in three different ways (Wilde and Brun 2007b). Suppose that an entanglement-assisted quantum code encodes information qubits into physical qubits with the help of ebits.

Which interpretation is most reasonable depends on the context in which we use the code. In any case, the parameters , , and ultimately govern performance, regardless of which definition of the rate we use to interpret that performance.

Example of an entanglement-assisted code

We present an example of an entanglement-assisted code that corrects an arbitrary single-qubit error (Brun et al. 2006). Suppose the sender wants to use the quantum error-correcting properties of the following nonabelian subgroup of :

The first two generators anticommute. We obtain a modified third generator by multiplying the third generator by the second. We then multiply the last generator by the first, second, and modified third generators. The error-correcting properties of the generators are invariant under these operations. The modified generators are as follows:

The above set of generators have the commutation relations given by the fundamental theorem of symplectic geometry:

The above set of generators is unitarily equivalent to the following canonical generators:

We can add one ebit to resolve the anticommutativity of the first two generators and obtain the canonical stabilizer:

The receiver Bob possesses the qubit on the left and the sender Alice possesses the four qubits on the right. The following state is an eigenstate of the above stabilizer

where is a qubit that the sender wants to encode. The encoding unitary then rotates the canonical stabilizer to the following set of globally commuting generators:

The receiver measures the above generators upon receipt of all qubits to detect and correct errors.

Encoding algorithm

We continue with the previous example. We detail an algorithm for determining an encoding circuit and the optimal number of ebits for the entanglement-assisted code---this algorithm first appeared in the appendix of (Wilde and Brun 2007a) and later in the appendix of (Shaw et al. 2008). The operators in the above example have the following representation as a binary matrix (See the stabilizer code article):

Call the matrix to the left of the vertical bar the " matrix" and the matrix to the right of the vertical bar the " matrix."

The algorithm consists of row and column operations on the above matrix. Row operations do not affect the error-correcting properties of the code but are crucial for arriving at the optimal decomposition from the fundamental theorem of symplectic geometry. The operations available for manipulating columns of the above matrix are Clifford operations. Clifford operations preserve the Pauli group under conjugation. The CNOT gate, the Hadamard gate, and the Phase gate generate the Clifford group. A CNOT gate from qubit to qubit adds column to column in the matrix and adds column to column in the matrix. A Hadamard gate on qubit swaps column in the matrix with column in the matrix and vice versa. A phase gate on qubit adds column in the matrix to column in the matrix. Three CNOT gates implement a qubit swap operation. The effect of a swap on qubits and is to swap columns and in both the and matrix.

The algorithm begins by computing the symplectic product between the first row and all other rows. We emphasize that the symplectic product here is the standard symplectic product. Leave the matrix as it is if the first row is not symplectically orthogonal to the second row or if the first row is symplectically orthogonal to all other rows. Otherwise, swap the second row with the first available row that is not symplectically orthogonal to the first row. In our example, the first row is not symplectically orthogonal to the second so we leave all rows as they are.

Arrange the first row so that the top left entry in the matrix is one. A CNOT, swap, Hadamard, or combinations of these operations can achieve this result. We can have this result in our example by swapping qubits one and two. The matrix becomes

Perform CNOTs to clear the entries in the matrix in the top row to the right of the leftmost entry. These entries are already zero in this example so we need not do anything. Proceed to the clear the entries in the first row of the matrix. Perform a phase gate to clear the leftmost entry in the first row of the matrix if it is equal to one. It is equal to zero in this case so we need not do anything. We then use Hadamards and CNOTs to clear the other entries in the first row of the matrix.

We perform the above operations for our example. Perform a Hadamard on qubits two and three. The matrix becomes

Perform a CNOT from qubit one to qubit two and from qubit one to qubit three. The matrix becomes

The first row is complete. We now proceed to clear the entries in the second row. Perform a Hadamard on qubits one and four. The matrix becomes

Perform a CNOT from qubit one to qubit two and from qubit one to qubit four. The matrix becomes

The first two rows are now complete. They need one ebit to compensate for their anticommutativity or their nonorthogonality with respect to the symplectic product.

Now we perform a "Gram-Schmidt orthogonalization" with respect to the symplectic product. Add row one to any other row that has one as the leftmost entry in its matrix. Add row two to any other row that has one as the leftmost entry in its matrix. For our example, we add row one to row four and we add row two to rows three and four. The matrix becomes

The first two rows are now symplectically orthogonal to all other rows per the fundamental theorem of symplectic geometry. We proceed with the same algorithm on the next two rows. The next two rows are symplectically orthogonal to each other so we can deal with them individually. Perform a Hadamard on qubit two. The matrix becomes

Perform a CNOT from qubit two to qubit three and from qubit two to qubit four. The matrix becomes

Perform a phase gate on qubit two:

Perform a Hadamard on qubit three followed by a CNOT from qubit two to qubit three:

Add row three to row four and perform a Hadamard on qubit two:

Perform a Hadamard on qubit four followed by a CNOT from qubit three to qubit four. End by performing a Hadamard on qubit three:

The above matrix now corresponds to the canonical Pauli operators. Adding one half of an ebit to the receiver's side gives the canonical stabilizer whose simultaneous +1-eigenstate is the above state. The above operations in reverse order take the canonical stabilizer to the encoded stabilizer.

Related Research Articles

Unitary group A group of unitary matrices

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.

Quantum logic gate

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.

Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is essential if one is to achieve fault-tolerant quantum computation that can deal not only with noise on stored quantum information, but also with faulty quantum gates, faulty quantum preparation, and faulty measurements.

The Bell states, a concept in quantum information science, are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will collapse it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will assign one of two possible values to the other qubit instantly, where the value assigned depends on which Bell state the two qubits are in. Bell states can be generalized to represent specific quantum states of multi-qubit systems, such as the GHZ state for 3 or more subsystems.

Superdense coding Two-bit quantum communication protocol

In quantum information theory, superdense coding is a quantum communication protocol to transmit two classical bits of information from a sender to a receiver, by sending only one qubit from Alice to Bob, under the assumption of Alice and Bob pre-sharing an entangled state. This protocol was first proposed by Bennett and Wiesner in 1992 and experimentally actualized in 1996 by Mattle, Weinfurter, Kwiat and Zeilinger using entangled photon pairs. By performing one of four quantum gate operations on the (entangled) qubit she possesses, Alice can prearrange the measurement Bob makes. After receiving Alice's qubit, operating on the pair and measuring both, Bob has two classical bits of information. If Alice and Bob do not already share entanglement before the protocol begins, then it is impossible to send two classical bits using 1 qubit, as this would violate Holevo's theorem.

Controlled NOT gate

In computer science, the controlled NOT gate is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle EPR states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations.

LOCC Method in quantum computation and communication

LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.

In quantum computing, a graph state is a special type of multi-qubit state that can be represented by a graph. Each qubit is represented by a vertex of the graph, and there is an edge between every interacting pair of qubits. In particular, they are a convenient way of representing certain types of entangled states.

The theory of quantum error correction plays a prominent role in the practical realization and engineering of quantum computing and quantum communication devices. The first quantum error-correcting codes are strikingly similar to classical block codes in their operation and performance. Quantum error-correcting codes restore a noisy, decohered quantum state to a pure quantum state. A stabilizer quantum error-correcting code appends ancilla qubits to qubits that we want to protect. A unitary encoding circuit rotates the global state into a subspace of a larger Hilbert space. This highly entangled, encoded state corrects for local noisy errors. A quantum error-correcting code makes quantum computation and quantum communication practical by providing a way for a sender and receiver to simulate a noiseless qubit channel given a noisy qubit channel whose noise conforms to a particular error model.

In quantum computing, quantum finite automata (QFA) or quantum state machines are a quantum analog of probabilistic automata or a Markov decision process. They provide a mathematical abstraction of real-world quantum computers. Several types of automata may be defined, including measure-once and measure-many automata. Quantum finite automata can also be understood as the quantization of subshifts of finite type, or as a quantization of Markov chains. QFAs are, in turn, special cases of geometric finite automata or topological finite automata.

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

In quantum information science, the concurrence is a state invariant involving qubits.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication (LOCC).

Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity.

DNA code construction refers to the application of coding theory to the design of nucleic acid systems for the field of DNA–based computation.

In the theory of quantum communication, an amplitude damping channel is a quantum channel that models physical processes such as spontaneous emission. A natural process by which this channel can occur is a spin chain through which a number of spin states, coupled by a time independent Hamiltonian, can be used to send a quantum state from one location to another. The resulting quantum channel ends up being identical to an amplitude damping channel, for which the quantum capacity, the classical capacity and the entanglement assisted classical capacity of the quantum channel can be evaluated.

In the theory of quantum communication, the quantum capacity is the highest rate at which quantum information can be communicated over many independent uses of a noisy quantum channel from a sender to a receiver. It is also equal to the highest rate at which entanglement can be generated over the channel, and forward classical communication cannot improve it. The quantum capacity theorem is important for the theory of quantum error correction, and more broadly for the theory of quantum computation. The theorem giving a lower bound on the quantum capacity of any channel is colloquially known as the LSD theorem, after the authors Lloyd, Shor, and Devetak who proved it with increasing standards of rigor.

Given a Hilbert space with a tensor product structure a product numerical range is defined as a numerical range with respect to the subset of product vectors. In some situations, especially in the context of quantum mechanics product numerical range is known as local numerical range

Linear Optical Quantum Computing or Linear Optics Quantum Computation (LOQC) is a paradigm of quantum computation, allowing universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

The KLM scheme or KLM protocol is an implementation of linear optical quantum computing (LOQC), developed in 2000 by Knill, Laflamme and Milburn. This protocol makes it possible to create universal quantum computers solely with linear optical tools. The KLM protocol uses linear optical elements, single photon sources and photon detectors as resources to construct a quantum computation scheme involving only ancilla resources, quantum teleportations and error corrections.

References