Entanglement-assisted classical capacity

Last updated

In the theory of quantum communication, the entanglement-assisted classical capacity of a quantum channel is the highest rate at which classical information can be transmitted from a sender to receiver when they share an unlimited amount of noiseless entanglement. It is given by the quantum mutual information of the channel, which is the input-output quantum mutual information maximized over all pure bipartite quantum states with one system transmitted through the channel. This formula is the natural generalization of Shannon's noisy channel coding theorem, in the sense that this formula is equal to the capacity, and there is no need to regularize it. An additional feature that it shares with Shannon's formula is that a noiseless classical or quantum feedback channel cannot increase the entanglement-assisted classical capacity. The entanglement-assisted classical capacity theorem is proved in two parts: the direct coding theorem and the converse theorem. The direct coding theorem demonstrates that the quantum mutual information of the channel is an achievable rate, by a random coding strategy that is effectively a noisy version of the super-dense coding protocol. The converse theorem demonstrates that this rate is optimal by making use of the strong subadditivity of quantum entropy.

See also

Related Research Articles

Information theory is the scientific study of the quantification, storage, and communication of digital information. The field was fundamentally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering.

Quantum information Information held in the state of a quantum system

Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.

In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley.

Quantum information science is an interdisciplinary field that seeks to understand the analysis, processing, and transmission of information using quantum mechanics principles. It combines the study of Information science with quantum effects in physics. It includes theoretical issues in computational models and more experimental topics in quantum physics, including what can and cannot be done with quantum information. The term quantum information theory is also used, but it fails to encompass experimental research, and can be confused with a subfield of quantum information science that addresses the processing of quantum information.

A cryptosystem is considered to have information-theoretic security if the system is secure against adversaries with unlimited computing resources and time. In contrast, a system which depends on the computational cost of cryptanalysis to be secure is called computationally, or conditionally, secure.

Charles H. Bennett (physicist)

Charles Henry Bennett is a physicist, information theorist and IBM Fellow at IBM Research. Bennett's recent work at IBM has concentrated on a re-examination of the physical basis of information, applying quantum physics to the problems surrounding information exchange. He has played a major role in elucidating the interconnections between physics and information, particularly in the realm of quantum computation, but also in cellular automata and reversible computing. He discovered, with Gilles Brassard, the concept of quantum cryptography and is one of the founding fathers of modern quantum information theory.

Gilles Brassard Canadian computer scientist

Gilles Brassard, is a faculty member of the Université de Montréal, where he has been a Full Professor since 1988 and Canada Research Chair since 2001.

In information theory, the noisy-channel coding theorem, establishes that for any given degree of noise contamination of a communication channel, it is possible to communicate discrete data nearly error-free up to a computable maximum rate through the channel. This result was presented by Claude Shannon in 1948 and was based in part on earlier work and ideas of Harry Nyquist and Ralph Hartley.

A timeline of events related to  information theory,  quantum information theory and statistical physics,  data compression,  error correcting codes and related subjects.

In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is the sender encodes the message with redundant information in the form of an ECC. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to correct these errors without retransmission. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code.

The decisive event which established the discipline of information theory, and brought it to immediate worldwide attention, was the publication of Claude E. Shannon's classic paper "A Mathematical Theory of Communication" in the Bell System Technical Journal in July and October 1948.

In mathematics, computer science, telecommunication, information theory, and searching theory, error-correcting codes with feedback refers to error correcting codes designed to work in the presence of feedback from the receiver to the sender.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

John A. Smolin

John A. Smolin is an American physicist and Fellow of the American Physical Society at IBM's Thomas J. Watson Research Center.

In the theory of quantum communication, the entanglement-assisted stabilizer formalism is a method for protecting quantum information with the help of entanglement shared between a sender and receiver before they transmit quantum data over a quantum communication channel. It extends the standard stabilizer formalism by including shared entanglement . The advantage of entanglement-assisted stabilizer codes is that the sender can exploit the error-correcting properties of an arbitrary set of Pauli operators. The sender's Pauli operators do not necessarily have to form an Abelian subgroup of the Pauli group over qubits. The sender can make clever use of her shared ebits so that the global stabilizer is Abelian and thus forms a valid quantum error-correcting code.

Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity.

Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse. This could be used to detect eavesdropping in quantum key distribution (QKD).

The noisy-storage model refers to a cryptographic model employed in quantum cryptography. It assumes that the quantum memory device of an attacker (adversary) trying to break the protocol is imperfect (noisy). The main goal of this model is to enable the secure implementation of two-party cryptographic primitives, such as bit commitment, oblivious transfer and secure identification.

Bound entanglement is a weak form of quantum entanglement, from which no singlets can be distilled with local operations and classical communication (LOCC).

Mark McMahon Wilde is an American quantum information scientist. Wilde's research spans quantum information theory, network quantum information, quantum error correction, quantum optical communication, quantum computational complexity, and quantum entropy inequalities. His research results on quantum entropy inequalities, time travel and quantum cloning, trade-offs in quantum communication, and quantum entanglement measures have been communicated in popular science media.

References