Spin qubit quantum computer

Last updated

The spin qubit quantum computer is a quantum computer based on controlling the spin of charge carriers (electrons and electron holes) in semiconductor devices. [1] The first spin qubit quantum computer was first proposed by Daniel Loss and David P. DiVincenzo in 1997,. [1] [2] The proposal was to use the intrinsic spin-1/2 degree of freedom of individual electrons confined in quantum dots as qubits. This should not be confused with other proposals that use the nuclear spin as qubit, like the Kane quantum computer or the nuclear magnetic resonance quantum computer.

Contents

Loss–DiVicenzo proposal

A double quantum dot. Each electron spin SL or SR define one quantum two-level system, or a spin qubit in the Loss-DiVincenzo proposal. A narrow gate between the two dots can modulate the coupling, allowing swap operations. DoubleQuantumDot.jpg
A double quantum dot. Each electron spin SL or SR define one quantum two-level system, or a spin qubit in the Loss-DiVincenzo proposal. A narrow gate between the two dots can modulate the coupling, allowing swap operations.

The Loss–DiVicenzo quantum computer proposal tried to fulfill DiVincenzo's criteria for a scalable quantum computer, [3] namely:

A candidate for such a quantum computer is a lateral quantum dot system. Earlier work on applications of quantum dots for quantum computing was done by Barenco et al. [4]

Implementation of the two-qubit gate

The Loss–DiVincenzo quantum computer operates, basically, using inter-dot gate voltage for implementing swap operations and local magnetic fields (or any other local spin manipulation) for implementing the controlled NOT gate (CNOT gate).

The swap operation is achieved by applying a pulsed inter-dot gate voltage, so the exchange constant in the Heisenberg Hamiltonian becomes time-dependent:

This description is only valid if:

is the Boltzmann constant and is the temperature in Kelvin.

From the pulsed Hamiltonian follows the time evolution operator

where is the time-ordering symbol.

We can choose a specific duration of the pulse such that the integral in time over gives and becomes the swap operator

This pulse run for half the time (with ) results in a square root of swap gate,

The "XOR" gate may be achieved by combining operations with individual spin rotation operations:

The operator is a conditional phase shift (controlled-Z) for the state in the basis of . [2] :4 It can be made into a CNOT gate by surrounding the desired target qubit with Hadamard gates.

Experimental realizations

Spin qubits mostly have been implemented by locally depleting two-dimensional electron gases in semiconductors such a gallium arsenide, [5] [6] and germanium. [7] Spin qubits have also been implemented in other material systems such as graphene. [8] A more recent development is using silicon spin qubits, an approach that is e.g. pursued by Intel. [9] [10] The advantage of the silicon platform is that it allows using modern semiconductor device fabrication for making the qubits. Some of these devices have a comparably high operation temperature of a few kelvins (hot qubits) which is advantageous for scaling the number of qubits in a quantum processor. [11] [12]

See also

Related Research Articles

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

<span class="mw-page-title-main">Quantum dot</span> Nano-scale semiconductor particles

Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic in nanotechnology and materials science. When a quantum dot is illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conduction band. The excited electron can drop back into the valence band releasing its energy as light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the discrete energy levels of the quantum dot in the conduction band and the valence band.

<span class="mw-page-title-main">Quantum logic gate</span> Basic circuit in quantum computing

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. Quantum logic gates are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.

<span class="mw-page-title-main">Charge qubit</span> Superconducting qubit implementation

In quantum computing, a charge qubit is a qubit whose basis states are charge states. In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction to a superconducting reservoir. The state of the qubit is determined by the number of Cooper pairs that have tunneled across the junction. In contrast with the charge state of an atomic or molecular ion, the charge states of such an "island" involve a macroscopic number of conduction electrons of the island. The quantum superposition of charge states can be achieved by tuning the gate voltage U that controls the chemical potential of the island. The charge qubit is typically read-out by electrostatically coupling the island to an extremely sensitive electrometer such as the radio-frequency single-electron transistor.

In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.

Superconducting quantum computing is a branch of solid state physics and quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs use superconducting architecture.

<span class="mw-page-title-main">Controlled NOT gate</span> Quantum logic gate

In computer science, the controlled NOT gate, controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.

In the physics of electromagnetism, the Abraham–Lorentz force is the reaction force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.

<span class="mw-page-title-main">Topological quantum computer</span> Hypothetical fault-tolerant quantum computer based on topological condensed matter

A topological quantum computer is a theoretical type of quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It utilizes quasiparticles, known as anyons, in two-dimensional systems. These anyons' world lines intertwine to form braids in a three-dimensional spacetime. These braids act as the logic gates of the computer. The primary advantage of using quantum braids over trapped quantum particles is enhanced stability. While small, cumulative perturbations can cause quantum states to decohere and introduce errors in traditional quantum computations, such perturbations do not alter the topological properties of the braids. This stability is akin to the difference between cutting and reattaching a string to form a different braid versus a ball colliding with a wall.

<span class="mw-page-title-main">Weak localization</span>

Weak localization is a physical effect which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a positive correction to the resistivity of a metal or semiconductor. The name emphasizes the fact that weak localization is a precursor of Anderson localization, which occurs at strong disorder.

Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.

Laser linewidth is the spectral linewidth of a laser beam.

Linear optical quantum computing or linear optics quantum computation (LOQC), also photonic quantum computing (PQC), is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.

David P. DiVincenzo is an American theoretical physicist. He is the director of the Institute of Theoretical Nanoelectronics at the Peter Grünberg Institute at the Forschungszentrum Jülich and professor at the Institute for Quantum Information at RWTH Aachen University. With Daniel Loss, he proposed the Loss–DiVincenzo quantum computer in 1997, which would use electron spins in quantum dots as qubits.

The DiVincenzo criteria are conditions necessary for constructing a quantum computer, conditions proposed in 1996 by the theoretical physicist David P. DiVincenzo, as being those necessary to construct such a computer—a computer first proposed by mathematician Yuri Manin, in 1980, and physicist Richard Feynman, in 1982—as a means to efficiently simulate quantum systems, such as in solving the quantum many-body problem.

In quantum computing, Mølmer–Sørensen gate scheme refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999–2000.

A neutral atom quantum computer is a modality of quantum computers built out of Rydberg atoms; this modality has many commonalities with trapped-ion quantum computers. As of December 2023, the concept has been used to demonstrate a 48 logical qubit processor.

References

  1. 1 2 Vandersypen, Lieven M. K.; Eriksson, Mark A. (2019-08-01). "Quantum computing with semiconductor spins". Physics Today. 72 (8): 38. Bibcode:2019PhT....72h..38V. doi:10.1063/PT.3.4270. ISSN   0031-9228. S2CID   201305644.
  2. 1 2 Loss, Daniel; DiVincenzo, David P. (1998-01-01). "Quantum computation with quantum dots". Physical Review A. 57 (1): 120–126. arXiv: cond-mat/9701055 . Bibcode:1998PhRvA..57..120L. doi: 10.1103/physreva.57.120 . ISSN   1050-2947.
  3. D. P. DiVincenzo, in Mesoscopic Electron Transport, Vol. 345 of NATO Advanced Study Institute, Series E: Applied Sciences, edited by L. Sohn, L. Kouwenhoven, and G. Schoen (Kluwer, Dordrecht, 1997); on arXiv.org in Dec. 1996
  4. Barenco, Adriano; Deutsch, David; Ekert, Artur; Josza, Richard (1995). "Conditional Quantum Dynamics and Logic Gates". Phys. Rev. Lett. 74 (20): 4083–4086. arXiv: quant-ph/9503017 . Bibcode:1995PhRvL..74.4083B. doi:10.1103/PhysRevLett.74.4083. PMID   10058408. S2CID   26611140.
  5. Petta, J. R. (2005). "Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots". Science. 309 (5744): 2180–2184. Bibcode:2005Sci...309.2180P. doi:10.1126/science.1116955. ISSN   0036-8075. PMID   16141370. S2CID   9107033.
  6. Bluhm, Hendrik; Foletti, Sandra; Neder, Izhar; Rudner, Mark; Mahalu, Diana; Umansky, Vladimir; Yacoby, Amir (2010). "Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs". Nature Physics. 7 (2): 109–113. doi: 10.1038/nphys1856 . ISSN   1745-2473.
  7. Watzinger, Hannes; Kukučka, Josip; Vukušić, Lada; Gao, Fei; Wang, Ting; Schäffler, Friedrich; Zhang, Jian-Jun; Katsaros, Georgios (2018-09-25). "A germanium hole spin qubit". Nature Communications. 9 (1): 3902. arXiv: 1802.00395 . Bibcode:2018NatCo...9.3902W. doi: 10.1038/s41467-018-06418-4 . ISSN   2041-1723. PMC   6156604 . PMID   30254225.
  8. Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (2007). "Spin qubits in graphene quantum dots". Nature Physics. 3 (3): 192–196. arXiv: cond-mat/0611252 . Bibcode:2007NatPh...3..192T. doi:10.1038/nphys544. ISSN   1745-2473. S2CID   119431314.
  9. Xue, Xiao; Patra, Bishnu; van Dijk, Jeroen P. G.; Samkharadze, Nodar; Subramanian, Sushil; Corna, Andrea; Paquelet Wuetz, Brian; Jeon, Charles; Sheikh, Farhana; Juarez-Hernandez, Esdras; Esparza, Brando Perez; Rampurawala, Huzaifa; Carlton, Brent; Ravikumar, Surej; Nieva, Carlos; Kim, Sungwon; Lee, Hyung-Jin; Sammak, Amir; Scappucci, Giordano; Veldhorst, Menno; Sebastiano, Fabio; Babaie, Masoud; Pellerano, Stefano; Charbon, Edoardo; Vandersypen, Lieven M. K. (2021-05-13). "CMOS-based cryogenic control of silicon quantum circuits". Nature. 593 (7858): 205–210. doi: 10.1038/s41586-021-03469-4 . ISSN   0028-0836.
  10. "What Intel is Planning for the Future of Quantum Computing: Hot Qubits, Cold Control Chips, and Rapid Testing - IEEE Spectrum".
  11. Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. (2020-04-16). "Operation of a silicon quantum processor unit cell above one kelvin". Nature. 580 (7803): 350–354. doi: 10.1038/s41586-020-2171-6 . ISSN   0028-0836.
  12. Camenzind, Leon C.; Geyer, Simon; Fuhrer, Andreas; Warburton, Richard J.; Zumbühl, Dominik M.; Kuhlmann, Andreas V. (2022-03-03). "A hole spin qubit in a fin field-effect transistor above 4 kelvin". Nature Electronics. 5 (3): 178–183. doi: 10.1038/s41928-022-00722-0 . ISSN   2520-1131.