No-broadcasting theorem

Last updated

In physics, the no-broadcasting theorem is a result of quantum information theory. In the case of pure quantum states, it is a corollary of the no-cloning theorem. The no-cloning theorem for pure states says that it is impossible to create two copies of an unknown state given a single copy of the state. Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more recipients. For multiple recipients to each receive the state, there must be, in some sense, a way of duplicating the state. The no-broadcast theorem generalizes the no-cloning theorem for mixed states.

Contents

The theorem [1] also includes a converse: if two quantum states do commute, there is a method for broadcasting them: they must have a common basis of eigenstates diagonalizing them simultaneously, and the map that clones every state of this basis is a legitimate quantum operation, requiring only physical resources independent of the input state to implement—a completely positive map. A corollary is that there is a physical process capable of broadcasting every state in some set of quantum states if, and only if, every pair of states in the set commutes. This broadcasting map, which works in the commuting case, produces an overall state in which the two copies are perfectly correlated in their eigenbasis.

Remarkably, the theorem does not hold if more than one copy of the initial state is provided: for example, broadcasting six copies starting from four copies of the original state is allowed, even if the states are drawn from a non-commuting set. The purity of the state can even be increased in the process, a phenomenon known as superbroadcasting. [2]

Generalized No-Broadcast Theorem

The generalized quantum no-broadcasting theorem, originally proven by Barnum, Caves, Fuchs, Jozsa and Schumacher for mixed states of finite-dimensional quantum systems, [3] says that given a pair of quantum states which do not commute, there is no method capable of taking a single copy of either state and succeeding, no matter which state was supplied and without incorporating knowledge of which state has been supplied, in producing a state such that one part of it is the same as the original state and the other part is also the same as the original state. That is, given an initial unknown state drawn from the set such that , there is no process (using physical means independent of those used to select the state) guaranteed to create a state in a Hilbert space whose partial traces are and . Such a process was termed broadcasting in that paper.

No-Local-Broadcasting Theorem

The second theorem states that local broadcasting is only possible when the state is a classical probability distribution. [4] This means that a state can only be broadcast locally if it does not have any quantum correlations. [5] Luo reconciled this theorem with the generalized no-broadcast theorem by making the conjecture that when a state is a classical-quantum state, correlations (rather than the state itself) in a bipartite state can be locally broadcast. [4] By mathematically proving that his conjecture and the two theorems all relate to and imply one another, Luo proved that all three statements are logically equivalent. [4]

See also

Related Research Articles

In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between measurements of quantum subsystems, even when spatially separated

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. The predictions that quantum physics makes are in general probabilistic. The mathematical tools for making predictions about what measurement outcomes may occur were developed during the 20th century and make use of linear algebra and functional analysis.

Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements.

The conditional quantum entropy is an entropy measure used in quantum information theory. It is a generalization of the conditional entropy of classical information theory. For a bipartite state , the conditional entropy is written , or , depending on the notation being used for the von Neumann entropy. The quantum conditional entropy was defined in terms of a conditional density operator by Nicolas Cerf and Chris Adami, who showed that quantum conditional entropies can be negative, something that is forbidden in classical physics. The negativity of quantum conditional entropy is a sufficient criterion for quantum non-separability.

In quantum mechanics, einselections, short for "environment-induced superselection", is a name coined by Wojciech H. Zurek for a process which is claimed to explain the appearance of wavefunction collapse and the emergence of classical descriptions of reality from quantum descriptions. In this approach, classicality is described as an emergent property induced in open quantum systems by their environments. Due to the interaction with the environment, the vast majority of states in the Hilbert space of a quantum open system become highly unstable due to entangling interaction with the environment, which in effect monitors selected observables of the system. After a decoherence time, which for macroscopic objects is typically many orders of magnitude shorter than any other dynamical timescale, a generic quantum state decays into an uncertain state which can be expressed as a mixture of simple pointer states. In this way the environment induces effective superselection rules. Thus, einselection precludes stable existence of pure superpositions of pointer states. These 'pointer states' are stable despite environmental interaction. The einselected states lack coherence, and therefore do not exhibit the quantum behaviours of entanglement and superposition.

The Peres–Horodecki criterion is a necessary condition, for the joint density matrix of two quantum mechanical systems and , to be separable. It is also called the PPT criterion, for positive partial transpose. In the 2×2 and 2×3 dimensional cases the condition is also sufficient. It is used to decide the separability of mixed states, where the Schmidt decomposition does not apply. The theorem was discovered in 1996 by Asher Peres and the Horodecki family

Quantum cloning is a process that takes an arbitrary, unknown quantum state and makes an exact copy without altering the original state in any way. Quantum cloning is forbidden by the laws of quantum mechanics as shown by the no cloning theorem, which states that there is no operation for cloning any arbitrary state perfectly. In Dirac notation, the process of quantum cloning is described by:

In quantum information theory, the reduction criterion is a necessary condition a mixed state must satisfy in order for it to be separable. In other words, the reduction criterion is a separability criterion. It was first proved and independently formulated in 1999. Violation of the reduction criterion is closely related to the distillability of the state in question.

In quantum information theory, the channel-state duality refers to the correspondence between quantum channels and quantum states. Phrased differently, the duality is the isomorphism between completely positive maps (channels) from A to Cn×n, where A is a C*-algebra and Cn×n denotes the n×n complex entries, and positive linear functionals (states) on the tensor product

The topological entanglement entropy or topological entropy, usually denoted by , is a number characterizing many-body states that possess topological order.

In mathematics, in the area of quantum information geometry, the Bures metric or Helstrom metric defines an infinitesimal distance between density matrix operators defining quantum states. It is a quantum generalization of the Fisher information metric, and is identical to the Fubini–Study metric when restricted to the pure states alone.

In quantum mechanics, especially in the study of open quantum systems, reduced dynamics refers to the time evolution of a density matrix for a system coupled to an environment. Consider a system and environment initially in the state and undergoing unitary evolution given by . Then the reduced dynamics of the system alone is simply

Many quantum mechanical Hamiltonians are time dependent. Methods to solve problems where there is an explicit time dependence is an open subject nowadays. It is important to look for constants of motion or invariants for problems of this kind. For the harmonic oscillator it is possible to write several invariants, among them, the Ermakov–Lewis invariant which is developed below.

The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways. The min-entropy is never greater than the ordinary or Shannon entropy and that in turn is never greater than the Hartley or max-entropy, defined as the logarithm of the number of outcomes with nonzero probability.

<span class="mw-page-title-main">Quantum thermodynamics</span> Study of the relations between thermodynamics and quantum mechanics

Quantum thermodynamics is the study of the relations between two independent physical theories: thermodynamics and quantum mechanics. The two independent theories address the physical phenomena of light and matter. In 1905, Albert Einstein argued that the requirement of consistency between thermodynamics and electromagnetism leads to the conclusion that light is quantized obtaining the relation . This paper is the dawn of quantum theory. In a few decades quantum theory became established with an independent set of rules. Currently quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. It differs from quantum statistical mechanics in the emphasis on dynamical processes out of equilibrium. In addition, there is a quest for the theory to be relevant for a single individual quantum system.

The no-hiding theorem states that if information is lost from a system via decoherence, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the linearity and unitarity of quantum mechanics. Thus, information is never lost. This has implications in black hole information paradox and in fact any process that tends to lose information completely. The no-hiding theorem is robust to imperfection in the physical process that seemingly destroys the original information.

In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.

The quantum Cramér–Rao bound is the quantum analogue of the classical Cramér–Rao bound. It bounds the achievable precision in parameter estimation with a quantum system:

The symmetric logarithmic derivative is an important quantity in quantum metrology, and is related to the quantum Fisher information.

References

  1. Barnum, Howard; Caves, Carlton M.; Fuchs, Christopher A.; Jozsa, Richard; Schumacher, Benjamin (1996-04-08). "Noncommuting Mixed States Cannot Be Broadcast". Physical Review Letters. 76 (15): 2818–2821. arXiv: quant-ph/9511010 . Bibcode:1996PhRvL..76.2818B. doi:10.1103/physrevlett.76.2818. ISSN   0031-9007. PMID   10060796. S2CID   11724387.
  2. D'Ariano, Giacomo Mauro; Macchiavello, Chiara; Perinotti, Paolo (2005-08-05). "Superbroadcasting of Mixed States". Physical Review Letters. 95 (6): 060503. arXiv: quant-ph/0506251 . Bibcode:2005PhRvL..95f0503D. doi:10.1103/physrevlett.95.060503. ISSN   0031-9007. PMID   16090933. S2CID   2978617.
  3. Barnum, Howard; Caves, Carlton M.; Fuchs, Christopher A.; Jozsa, Richard; Schumacher, Benjamin (1996-04-08). "Noncommuting Mixed States Cannot Be Broadcast". Physical Review Letters. 76 (15): 2818–2821. arXiv: quant-ph/9511010 . Bibcode:1996PhRvL..76.2818B. doi:10.1103/physrevlett.76.2818. ISSN   0031-9007. PMID   10060796. S2CID   11724387.
  4. 1 2 3 Luo, Shunlong (2010). "On Quantum No-Broadcasting". Letters in Mathematical Physics. 92 (2): 143–153. Bibcode:2010LMaPh..92..143L. doi:10.1007/s11005-010-0389-1. S2CID   121819242 . Retrieved 2020-10-16.
  5. Piani, Marco; Horodecki, Pawel; Horodecki, Ryszard (2008-03-06). "No-local-broadcasting theorem for quantum correlations". Physical Review Letters. 100 (9): 090502. arXiv: 0707.0848 . doi:10.1103/PhysRevLett.100.090502. ISSN   0031-9007. PMID   18352686. S2CID   42381925.
  6. Quantum no-hiding theorem experimentally confirmed for first time. Mar 07, 2011 by Lisa Zyga.