Topological quantum computer

Last updated

Topological quantum computer.jpg

A topological quantum computer is a theoretical type of quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. [1] It utilizes quasiparticles, known as anyons, in two-dimensional systems. These anyons' world lines intertwine to form braids in a three-dimensional spacetime (one temporal and two spatial dimensions). These braids act as the logic gates of the computer. The primary advantage of using quantum braids over trapped quantum particles is enhanced stability. While small, cumulative perturbations can cause quantum states to decohere and introduce errors in traditional quantum computations, such perturbations do not alter the topological properties of the braids. This stability is akin to the difference between cutting and reattaching a string to form a different braid versus a ball (representing an ordinary quantum particle in four-dimensional spacetime) colliding with a wall.

Contents

While the elements of a topological quantum computer originate in a purely mathematical realm, experiments in fractional quantum Hall systems indicate these elements may be created in the real world using semiconductors made of gallium arsenide at a temperature of near absolute zero and subjected to strong magnetic fields.

As of 2022, Microsoft is the only major technology company with a history of research and development in topological quantum computing. [2] [3]

Introduction

Anyons are quasiparticles in a two-dimensional space. Anyons are neither fermions nor bosons, but like fermions, they cannot occupy the same state. Thus, the world lines of two anyons cannot intersect or merge, which allows their paths to form stable braids in space-time. Anyons can form from excitations in a cold, two-dimensional electron gas in a very strong magnetic field, and carry fractional units of magnetic flux. This phenomenon is called the fractional quantum Hall effect. In typical laboratory systems, the electron gas occupies a thin semiconducting layer sandwiched between layers of aluminium gallium arsenide.

When anyons are braided, the transformation of the quantum state of the system depends only on the topological class of the anyons' trajectories (which are classified according to the braid group). Therefore, the quantum information which is stored in the state of the system is impervious to small errors in the trajectories. [4] In 2005, Sankar Das Sarma, Michael Freedman, and Chetan Nayak proposed a quantum Hall device that would realize a topological qubit. In 2005 Vladimir J. Goldman, Fernando E. Camino, and Wei Zhou [5] claimed to have created and observed the first experimental evidence for using a fractional quantum Hall effect to create actual anyons, although others have suggested their results could be the product of phenomena not involving anyons. Non-abelian anyons, a species required for topological quantum computers, have yet to be experimentally confirmed. Possible experimental evidence has been found, [6] but the conclusions remain contested. [7] In 2018, scientists again claimed to have isolated the required Majorana particles, but the finding was retracted in 2021. Quanta Magazine stated in 2021 that "no one has convincingly shown the existence of even a single (Majorana zero-mode) quasiparticle", [8] although in 2023 a new article [9] by the magazine has covered some preprints by Google [10] and Quantinuum [11] claiming the realization of non-abelian anyons on quantum processors, the first used a toric code with twist defects as a topological degenerancy (or topological defect) while the second used a different but related protocol both of which can be understood as Majorana bound states in quantum error correction.

Topological vs. standard quantum computer

Topological quantum computers are equivalent in computational power to other standard models of quantum computation, in particular to the quantum circuit model and to the quantum Turing machine model. [12] That is, any of these models can efficiently simulate any of the others. Nonetheless, certain algorithms may be a more natural fit to the topological quantum computer model. For example, algorithms for evaluating the Jones polynomial were first developed in the topological model, and only later converted and extended in the standard quantum circuit model.

Computations

To live up to its name, a topological quantum computer must provide the unique computation properties promised by a conventional quantum computer design, which uses trapped quantum particles. In 2000, Michael H. Freedman, Alexei Kitaev, Michael J. Larsen, and Zhenghan Wang proved that a topological quantum computer can, in principle, perform any computation that a conventional quantum computer can do, and vice versa. [12] [13] [14]

They found that a conventional quantum computer device, given an error-free operation of its logic circuits, will give a solution with an absolute level of accuracy, whereas a topological quantum computing device with flawless operation will give the solution with only a finite level of accuracy. However, any level of precision for the answer can be obtained by adding more braid twists (logic circuits) to the topological quantum computer, in a simple linear relationship. In other words, a reasonable increase in elements (braid twists) can achieve a high degree of accuracy in the answer. Actual computation [gates] are done by the edge states of a fractional quantum Hall effect. This makes models of one-dimensional anyons important. In one space dimension, anyons are defined algebraically.

Error correction and control

Even though quantum braids are inherently more stable than trapped quantum particles, there is still a need to control for error inducing thermal fluctuations, which produce random stray pairs of anyons which interfere with adjoining braids. Controlling these errors is simply a matter of separating the anyons to a distance where the rate of interfering strays drops to near zero. Simulating the dynamics of a topological quantum computer may be a promising method of implementing fault-tolerant quantum computation even with a standard quantum information processing scheme. Raussendorf, Harrington, and Goyal have studied one model, with promising simulation results. [15]

Example: Computing with Fibonacci anyons

One of the prominent examples in topological quantum computing is with a system of Fibonacci anyons. A Fibonacci anyon has been described as "an emergent particle with the property that as you add more particles to the system, the number of quantum states grows like the Fibonacci sequence, 1, 2, 3, 5, 8, etc.." [16] In the context of conformal field theory, fibonacci anyons are described by the Yang–Lee model, the SU(2) special case of the Chern–Simons theory and Wess–Zumino–Witten models. [17] These anyons can be used to create generic gates for topological quantum computing. There are three main steps for creating a model:

State preparation

Fibonacci anyons are defined by three qualities:

  1. They have a topological charge of . In this discussion, we consider another charge called which is the ‘vacuum’ charge if anyons are annihilated with each-other.
  2. Each of these anyons are their own antiparticle. and .
  3. If brought close to each-other, they will ‘fuse’ together in a nontrivial fashion. Specifically, the ‘fusion’ rules are:
  4. Many of the properties of this system can be explained similarly to that of two spin 1/2 particles. Particularly, we use the same tensor product and direct sum operators.

The last ‘fusion’ rule can be extended this to a system of three anyons:

Thus, fusing three anyons will yield a final state of total charge in 2 ways, or a charge of in exactly one way. We use three states to define our basis. [18] However, because we wish to encode these three anyon states as superpositions of 0 and 1, we need to limit the basis to a two-dimensional Hilbert space. Thus, we consider only two states with a total charge of . This choice is purely phenomenological. In these states, we group the two leftmost anyons into a 'control group', and leave the rightmost as a 'non-computational anyon'. We classify a state as one where the control group has total 'fused' charge of , and a state of has a control group with a total 'fused' charge of . For a more complete description, see Nayak. [18]

Gates

Following the ideas above, adiabatically braiding these anyons around each-other will result in a unitary transformation. These braid operators are a result of two subclasses of operators:

The R matrix can be conceptually thought of as the topological phase that is imparted onto the anyons during the braid. As the anyons wind around each-other, they pick up some phase due to the Aharonov–Bohm effect.

The F matrix is a result of the physical rotations of the anyons. As they braid between each-other, it is important to realize that the bottom two anyons—the control group—will still distinguish the state of the qubit. Thus, braiding the anyons will change which anyons are in the control group, and therefore change the basis. We evaluate the anyons by always fusing the control group (the bottom anyons) together first, so exchanging which anyons these are will rotate the system. Because these anyons are non-abelian, the order of the anyons (which ones are within the control group) will matter, and as such they will transform the system.

The complete braid operator can be derived as:

In order to mathematically construct the F and R operators, we can consider permutations of these F and R operators. We know that if we sequentially change the basis that we are operating on, this will eventually lead us back to the same basis. Similarly, we know that if we braid anyons around each-other a certain number of times, this will lead back to the same state. These axioms are called the pentagonal and hexagonal axioms respectively as performing the operation can be visualized with a pentagon/hexagon of state transformations. Although mathematically difficult, [19] these can be approached much more successfully visually.

With these braid operators, we can finally formalize the notion of braids in terms of how they act on our Hilbert space and construct arbitrary universal quantum gates. [20]

Experimental efforts

In 2018, Leo Kouwenhoven working for Microsoft published a paper in Nature indicating to have found firm evidence of "zero-bias peaks" indicating Majorana quasiparticles. In 2020, the paper got an editorial note of concern. In 2021, in a follow-up paper it was indicated that the data in the 2018 paper was incomplete and misrepresented the results. [21]

In 2023, Microsoft Quantum researchers published a paper in Physical Review that described a new device that can represent a logical qubit with hardware stability, measuring a phase of matter consistent with the observation of topological superconductivity and Majorana zero modes. [22] The scientists reported that "such devices have demonstrated low enough disorder to pass the topological gap protocol, proving the technology is viable." [23] This publication has been criticized by other scientists for not providing sufficient evidence for Majorana modes as in previous papers. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Quantum computing</span> Computer hardware technology that uses quantum mechanics

A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior using specialized hardware. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer. Theoretically a large-scale quantum computer could break some widely used encryption schemes and aid physicists in performing physical simulations; however, the current state of the art is largely experimental and impractical, with several obstacles to useful applications.

<span class="mw-page-title-main">Timeline of quantum computing and communication</span>

This is a timeline of quantum computing.

In physics, an anyon is a type of quasiparticle so far observed only in two-dimensional systems. In three-dimensional systems, only two kinds of elementary particles are seen: fermions and bosons. Anyons have statistical properties intermediate between fermions and bosons. In general, the operation of exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons, detected by two experiments in 2020, play a major role in the fractional quantum Hall effect.

Quantum Information Science is a field that combines the principles of quantum mechanics with information theory to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it does not include experimental research and can be confused with a subfield of quantum information science that deals with the processing of quantum information.

In mathematics and theoretical physics, braid statistics is a generalization of the spin statistics of bosons and fermions based on the concept of braid group. While for fermions (Bosons) the corresponding statistics is associated to a phase gain of under the exchange of identical particles, a particle with braid statistics leads to a rational fraction of under such exchange or even a non-trivial unitary transformation in the Hilbert space. A similar notion exists using a loop braid group.

The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of , where e is the electron charge and h is the Planck constant. It is a property of a collective state in which electrons bind magnetic flux lines to make new quasiparticles, and excitations have a fractional elementary charge and possibly also fractional statistics. The 1998 Nobel Prize in Physics was awarded to Robert Laughlin, Horst Störmer, and Daniel Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations". The microscopic origin of the FQHE is a major research topic in condensed matter physics.

Microsoft Research (MSR) is the research subsidiary of Microsoft. It was created in 1991 by Richard Rashid, Bill Gates and Nathan Myhrvold with the intent to advance state-of-the-art computing and solve difficult world problems through technological innovation in collaboration with academic, government, and industry researchers. The Microsoft Research team has more than 1,000 computer scientists, physicists, engineers, and mathematicians, including Turing Award winners, Fields Medal winners, MacArthur Fellows, and Dijkstra Prize winners.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

<span class="mw-page-title-main">Majorana fermion</span> Fermion that is its own antiparticle

A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

<span class="mw-page-title-main">Sankar Das Sarma</span>

Sankar Das Sarma is an India-born American theoretical condensed matter physicist. He has been a member of the department of physics at University of Maryland, College Park since 1980.

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

In quantum mechanics, fractionalization is the phenomenon whereby the quasiparticles of a system cannot be constructed as combinations of its elementary constituents. One of the earliest and most prominent examples is the fractional quantum Hall effect, where the constituent particles are electrons but the quasiparticles carry fractions of the electron charge. Fractionalization can be understood as deconfinement of quasiparticles that together are viewed as comprising the elementary constituents. In the case of spin–charge separation, for example, the electron can be viewed as a bound state of a 'spinon' and a 'holon ', which under certain conditions can become free to move separately.

In quantum many-body physics, topological degeneracy is a phenomenon in which the ground state of a gapped many-body Hamiltonian becomes degenerate in the limit of large system size such that the degeneracy cannot be lifted by any local perturbations.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are graphene and other Dirac semimetals, topological insulators, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the gamma matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

A fracton is an emergent topological quasiparticle excitation which is immobile when in isolation. Many theoretical systems have been proposed in which fractons exist as elementary excitations. Such systems are known as fracton models. Fractons have been identified in various CSS codes as well as in symmetric tensor gauge theories.

Anyon fusion is the process by which multiple anyons behave as one larger composite anyon. Anyon fusion is essential to understanding the physics of non-abelian anyons and how they can be used in quantum information.

In quantum computing, a qubit is a unit of information analogous to a bit in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations.

The One Clean Qubit model of computation is performed an qubit system with one pure state and maximally mixed states. This model was motivated by highly mixed states that are prevalent in Nuclear magnetic resonance quantum computers. It's described by the density matrix , where is the identity matrix. In computational complexity theory, DQC1; also known as the Deterministic quantum computation with one clean qubit is the class of decision problems solvable by a one clean qubit machine in polynomial time, upon measuring the first qubit, with an error probability of at most 1/poly(n) for all instances.

<span class="mw-page-title-main">Zhenghan Wang</span> Chinese-American mathematician

Zhenghan Wang is a Chinese-American mathematician. He is a principal researcher at Microsoft Station Q, as well as a professor of mathematics at the University of California, Santa Barbara.

<span class="mw-page-title-main">Chetan Nayak</span> American computer scientist

Chetan Nayak is an American physicist and computer scientist specializing in quantum computing. He is a professor at the University of California, Santa Barbara and a technical fellow and distinguished engineer on the Microsoft Azure Quantum hardware team. He joined Microsoft in 2005 and became director and general manager of Quantum Hardware at Microsoft Station Q at Microsoft Research in 2014.

References

  1. Kitaev, Alexei (9 July 1997). "Fault-tolerant quantum computation by anyons". Annals of Physics. 303 (1): 2–30. arXiv: quant-ph/9707021v1 . Bibcode:2003AnPhy.303....2K. doi:10.1016/S0003-4916(02)00018-0. S2CID   11199664.
  2. Pires, Francisco (20 March 2022). "Microsoft Chooses Exotic "Topological Qubits" as Future of Quantum Computing". Tom's Hardware. Retrieved 1 July 2024.
  3. Gibney, Elizabeth (21 October 2016). "Inside Microsoft's quest for a topological quantum computer". Nature. Retrieved 1 July 2024.
  4. Castelvecchi, Davide (July 3, 2020). "Welcome anyons! Physicists find best evidence yet for long-sought 2D structures". Nature. 583 (7815): 176–177. Bibcode:2020Natur.583..176C. doi: 10.1038/d41586-020-01988-0 . PMID   32620884. S2CID   220336025. Simon and others have developed elaborate theories that use anyons as the platform for quantum computers. Pairs of the quasiparticle could encode information in their memory of how they have circled around one another. And because the fractional statistics is 'topological' — it depends on the number of times one anyon went around another, and not on slight changes to its path — it is unaffected by tiny perturbations. This robustness could make topological quantum computers easier to scale up than are current quantum-computing technologies, which are error-prone.
  5. Camino, Fernando E.; Zhou, Wei; Goldman, Vladimir J. (December 6, 2005). "Aharonov–Bohm superperiod in a Laughlin quasiparticle interferometer". Phys. Rev. Lett. 95 (24): 246802. arXiv: cond-mat/0504341 . Bibcode:2005PhRvL..95x6802C. doi: 10.1103/PhysRevLett.95.246802 . PMID   16384405.
  6. Willet, R. L. (January 15, 2013). "Magnetic field-tuned Aharonov–Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2". Physical Review Letters. 111 (18): 186401. arXiv: 1301.2639 . Bibcode:2013PhRvL.111r6401W. doi:10.1103/PhysRevLett.111.186401. PMID   24237543. S2CID   22780228.
  7. von Keyserling, Curt; Simon, S. H.; Bernd, Rosenow (2015). "Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers". Physical Review Letters. 115 (12): 126807. arXiv: 1411.4654 . Bibcode:2015PhRvL.115l6807V. doi:10.1103/PhysRevLett.115.126807. PMID   26431008. S2CID   20103218.
  8. Ball, Philip (29 September 2021). "Major Quantum Computing Strategy Suffers Serious Setbacks". Quanta Magazine. Retrieved 30 September 2021.
  9. Wood, Charlie (9 May 2023). "Physicists Create Elusive Particles That Remember Their Pasts". Quanta Magazine .
  10. Andersen, Trond; et al. (9 October 2023). "Observation of non-Abelian exchange statistics on a superconducting processor". Bulletin of the American Physical Society. arXiv: 2210.10255 .
  11. Iqbal, Mohsin and more (2024). "Non-Abelian topological order and anyons on a trapped-ion processor". Nature. 626 (7999): 505–511. arXiv: 2305.03766 . Bibcode:2024Natur.626..505I. doi:10.1038/s41586-023-06934-4. PMID   38356069.
  12. 1 2 Freedman, Michael H.; Larsen, Michael; Wang, Zhenghan (2002-06-01). "A Modular Functor Which is Universal for Quantum Computation". Communications in Mathematical Physics. 227 (3): 605–622. arXiv: quant-ph/0001108 . Bibcode:2002CMaPh.227..605F. doi:10.1007/s002200200645. ISSN   0010-3616. S2CID   8990600.
  13. Freedman, Michael H.; Kitaev, Alexei; Wang, Zhenghan (2002-06-01). "Simulation of Topological Field Theories by Quantum Computers". Communications in Mathematical Physics. 227 (3): 587–603. arXiv: quant-ph/0001071 . Bibcode:2002CMaPh.227..587F. doi:10.1007/s002200200635. ISSN   0010-3616. S2CID   449219.
  14. Freedman, Michael; Kitaev, Alexei; Larsen, Michael; Wang, Zhenghan (2003-01-01). "Topological quantum computation". Bulletin of the American Mathematical Society. 40 (1): 31–38. arXiv: quant-ph/0101025 . doi:10.1090/S0273-0979-02-00964-3. ISSN   0273-0979.
  15. Raussendorf, R.; Harrington, J.; Goyal, K. (2007-01-01). "Topological fault-tolerance in cluster state quantum computation". New Journal of Physics. 9 (6): 199. arXiv: quant-ph/0703143 . Bibcode:2007NJPh....9..199R. doi:10.1088/1367-2630/9/6/199. ISSN   1367-2630. S2CID   13811487.
  16. Pierce, Cheryl; University, Purdue. "Proposed quantum device may succinctly realize emergent particles such as the Fibonacci anyon". phys.org. Retrieved 2024-02-25.
  17. Trebst, Simon; Troyer, Matthias; Wang, Zhenghan; Ludwig, Andreas W. W. (2008). "A Short Introduction to Fibonacci Anyon Models". Progress of Theoretical Physics Supplement. 176: 384–407. arXiv: 0902.3275 . Bibcode:2008PThPS.176..384T. doi:10.1143/PTPS.176.384. S2CID   16880657.
  18. 1 2 Nayak, Chetan (2008). "Non-Abelian Anyons and Topological Quantum Computation". Reviews of Modern Physics. 80 (3): 1083–1159. arXiv: 0707.1889 . Bibcode:2008RvMP...80.1083N. doi:10.1103/RevModPhys.80.1083. S2CID   119628297.
  19. Eric Paquette. Topological quantum computing with anyons, 2009. Categories, Logic and Foundations of Physics IV.
  20. Explicit braids that perform particular quantum computations with Fibonacci anyons have been given by Bonesteel, N. E.; Hormozi, L.; Zikos, G.; Simon, S. H.; West, K. W. (2005). "Braid Topologies for Quantum Computation". Physical Review Letters. 95 (14): 140503. arXiv: quant-ph/0505065 . Bibcode:2005PhRvL..95n0503B. doi:10.1103/PhysRevLett.95.140503. PMID   16241636. S2CID   1246885.
  21. Simonite, Tom. "Microsoft's Big Win in Quantum Computing Was an 'Error' After All". Wired. ISSN   1059-1028 . Retrieved 2024-10-23.
  22. Aghaee, Morteza (21 June 2023). "InAs-Al hybrid devices passing the topological gap protocol". Phys. Rev. B. 107 (24): 245423. arXiv: 2207.02472 . Bibcode:2023PhRvB.107x5423A. doi:10.1103/PhysRevB.107.245423.
  23. Yirka, Bob (24 June 2023). "Microsoft claims to have achieved first milestone in creating a reliable and practical quantum computer". Phys.org. Retrieved 1 July 2024.
  24. "'Poor man's Majoranas' offer testbed for studying possible qubits". Physics World. 2024. Retrieved 2024-10-23.

Further reading