Superconducting quantum computing

Last updated

Superconducting quantum computing is a branch of solid state physics and quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. [1] Research in superconducting quantum computing is conducted by companies such as Google, [2] IBM, [3] IMEC, [4] BBN Technologies, [5] Rigetti, [6] and Intel. [7] Many recently developed QPUs (quantum processing units, or quantum chips) use superconducting architecture.

Contents

As of May 2016, up to 9 fully controllable qubits are demonstrated in the 1D array, [8] and up to 16 in 2D architecture. [3] In October 2019, the Martinis group, partnered with Google, published an article demonstrating novel quantum supremacy, using a chip composed of 53 superconducting qubits. [9]

Background

Classical computation models rely on physical implementations consistent with the laws of classical mechanics. [10] Classical descriptions are accurate only for specific systems consisting of a relatively large number of atoms. A more general description of nature is given by quantum mechanics. Quantum computation studies quantum phenomena applications beyond the scope of classical approximation, with the purpose of performing quantum information processing and communication. Various models of quantum computation exist, but the most popular models incorporate concepts of qubits and quantum gates (or gate-based superconducting quantum computing).

Superconductors are implemented due to the fact that at low temperatures they have infinite conductivity and zero resistance. Each qubit is built using semiconductor circuits with an LC circuit: a capacitor and an inductor.[ citation needed ]

Superconducting capacitors and inductors are used to produce a resonant circuit that dissipates almost no energy, as heat can disrupt quantum information. The superconducting resonant circuits are a class of artificial atoms that can be used as qubits. Theoretical and physical implementations of quantum circuits are widely different. Implementing a quantum circuit had its own set of challenges and must abide by DiVincenzo's criteria, conditions proposed by theoretical physicist David P DiVincenzo, [11] which is set of criteria for the physical implementation of superconducting quantum computing, where the initial five criteria ensure that the quantum computer is in line with the postulates of quantum mechanics and the remaining two pertaining to the relaying of this information over a network.[ citation needed ]

We map the ground and excited states of these atoms to the 0 and 1 state as these are discrete and distinct energy values and therefore it is in line with the postulates of quantum mechanics. In such a construction however an electron can jump to multiple other energy states and not be confined to our excited state; therefore, it is imperative that the system be limited to be affected only by photons with energy difference required to jump from the ground state to the excited state. [12] However, this leaves one major issue, we require uneven spacing between our energy levels to prevent photons with the same energy from causing transitions between neighboring pairs of states. Josephson junctions are superconducting elements with a nonlinear inductance, which is critically important for qubit implementation. [12] The use of this nonlinear element in the resonant superconducting circuit produces uneven spacings between the energy levels.[ citation needed ]

Qubits

A qubit is a generalization of a bit (a system with two possible states) capable of occupying a quantum superposition of both states. A quantum gate, on the other hand, is a generalization of a logic gate describing the transformation of one or more qubits once a gate is applied given their initial state. Physical implementation of qubits and gates is challenging for the same reason that quantum phenomena are difficult to observe in everyday life given the minute scale on which they occur. One approach to achieving quantum computers is by implementing superconductors whereby quantum effects are macroscopically observable, though at the price of extremely low operation temperatures.

Superconductors

Unlike typical conductors, superconductors possess a critical temperature at which resistivity plummets to nearly zero and conductivity is drastically increased. In superconductors, the basic charge carriers are pairs of electrons (known as Cooper pairs), rather than single fermions as found in typical conductors. [13] Cooper pairs are loosely bound and have an energy state lower than that of Fermi Energy. Electrons forming Cooper pairs possess equal and opposite momentum and spin so that the total spin of the Cooper pair is an integer spin. Hence, Cooper pairs are bosons. Two such superconductors which have been used in superconducting qubit models are niobium and tantalum, both d-band superconductors. [14]

Bose–Einstein condensates

Once cooled to nearly absolute zero, a collection of bosons collapse into their lowest energy quantum state (the ground state) to form a state of matter known as Bose–Einstein condensate. Unlike fermions, bosons may occupy the same quantum energy level (or quantum state) and do not obey the Pauli exclusion principle. Classically, Bose-Einstein Condensate can be conceptualized as multiple particles occupying the same position in space and having equal momentum. Because interactive forces between bosons are minimized, Bose-Einstein Condensates effectively act as a superconductor. Thus, superconductors are implemented in quantum computing because they possess both near infinite conductivity and near zero resistance. The advantages of a superconductor over a typical conductor, then, are twofold in that superconductors can, in theory, transmit signals nearly instantaneously and run infinitely with no energy loss. The prospect of actualizing superconducting quantum computers becomes all the more promising considering NASA's recent development of the Cold Atom Lab in outer space where Bose-Einstein Condensates are more readily achieved and sustained (without rapid dissipation) for longer periods of time without the constraints of gravity. [15]

Electrical circuits

At each point of a superconducting electronic circuit (a network of electrical elements), the condensate wave function describing charge flow is well-defined by some complex probability amplitude. In typical conductor electrical circuits, this same description is true for individual charge carriers except that the various wave functions are averaged in macroscopic analysis, making it impossible to observe quantum effects. The condensate wave function becomes useful in allowing design and measurement of macroscopic quantum effects. Similar to the discrete atomic energy levels in the Bohr model, only discrete numbers of magnetic flux quanta can penetrate a superconducting loop. In both cases, quantization results from complex amplitude continuity. Differing from microscopic implementations of quantum computers (such as atoms or photons), parameters of superconducting circuits are designed by setting (classical) values to the electrical elements composing them such as by adjusting capacitance or inductance.

To obtain a quantum mechanical description of an electrical circuit, a few steps are required. Firstly, all electrical elements must be described by the condensate wave function amplitude and phase rather than by closely related macroscopic current and voltage descriptions used for classical circuits. For instance, the square of the wave function amplitude at any arbitrary point in space corresponds to the probability of finding a charge carrier there. Therefore, the squared amplitude corresponds to a classical charge distribution. The second requirement to obtain a quantum mechanical description of an electrical circuit is that generalized Kirchhoff's circuit laws are applied at every node of the circuit network to obtain the system's equations of motion. Finally, these equations of motion must be reformulated to Lagrangian mechanics such that a quantum Hamiltonian is derived describing the total energy of the system.

Technology

Manufacturing

Superconducting quantum computing devices are typically designed in the radio-frequency spectrum, cooled in dilution refrigerators below 15 mK and addressed with conventional electronic instruments, e.g. frequency synthesizers and spectrum analyzers. Typical dimensions fall on the range of micrometers, with sub-micrometer resolution, allowing for the convenient design of a Hamiltonian system with well-established integrated circuit technology. Manufacturing superconducting qubits follows a process involving lithography, depositing of metal, etching, and controlled oxidation as described in. [16] Manufacturers continue to improve the lifetime of superconducting qubits and have made significant improvements since the early 2000s. [16] :4

Josephson junctions

A single Josephson junction where C is a thin layer of insulator and A & B are (superconducting) currents with nonequivalent wave functions Single josephson junction.svg
A single Josephson junction where C is a thin layer of insulator and A & B are (superconducting) currents with nonequivalent wave functions

One distinguishable attribute of superconducting quantum circuits is the use of Josephson junctions. Josephson junctions are an electrical element which does not exist in normal conductors. Recall that a junction is a weak connection between two leads of wire (in this case a superconductive wire) on either side of a thin layer of insulator material only a few atoms thick, usually implemented using shadow evaporation technique. The resulting Josephson junction device exhibits the Josephson Effect whereby the junction produces a supercurrent. An image of a single Josephson junction is shown to the right. The condensate wave function on the two sides of the junction are weakly correlated, meaning that they are allowed to have different superconducting phases. This distinction of nonlinearity contrasts continuous superconducting wire for which the wave function across the junction must be continuous. Current flow through the junction occurs by quantum tunneling, seeming to instantaneously "tunnel" from one side of the junction to the other. This tunneling phenomenon is unique to quantum systems. Thus, quantum tunneling is used to create nonlinear inductance, essential for qubit design as it allows a design of anharmonic oscillators for which energy levels are discretized (or quantized) with nonuniform spacing between energy levels, denoted . [1] In contrast, the quantum harmonic oscillator cannot be used as a qubit as there is no way to address only two of its states, given that the spacing between every energy level and the next is exactly the same.

Qubit archetypes

The three primary superconducting qubit archetypes are the phase, charge and flux qubit. Many hybridizations of these archetypes exist including the fluxonium, [17] transmon, [18] Xmon, [19] and quantronium. [20] For any qubit implementation the logical quantum states are mapped to different states of the physical system (typically to discrete energy levels or their quantum superpositions). Each of the three archetypes possess a distinct range of Josephson energy to charging energy ratio. Josephson energy refers to the energy stored in Josephson junctions when current passes through, and charging energy is the energy required for one Cooper pair to charge the junction's total capacitance. [21] Josephson energy can be written as

A graph of various superconducting qubit archetypes by their Josephson energy to charging energy ratio with a legend on the right. The top left graphic illustrates a unimon electrical circuit. Energy scales for qubits.png
A graph of various superconducting qubit archetypes by their Josephson energy to charging energy ratio with a legend on the right. The top left graphic illustrates a unimon electrical circuit.
,

where is the critical current parameter of the Josephson junction, is (superconducting) flux quantum, and is the phase difference across the junction. [21] Notice that the term indicates nonlinearity of the Josephson junction. [21] Charge energy is written as

,

where is the junction's capacitance and is electron charge. [21] Of the three archetypes, phase qubits allow the most of Cooper pairs to tunnel through the junction, followed by flux qubits, and charge qubits allow the fewest.

Phase qubit

The phase qubit possesses a Josephson to charge energy ratio on the order of magnitude . For phase qubits, energy levels correspond to different quantum charge oscillation amplitudes across a Josephson junction, where charge and phase are analogous to momentum and position respectively as analogous to a quantum harmonic oscillator. Note that in this context phase is the complex argument of the superconducting wave function (also known as the superconducting order parameter), not the phase between the different states of the qubit.

The left-most image shows a fluxonium superconducting loop consisting of a collection of larger area Josephson junctions and one smaller area Josephson junction, as shown by an electron microscope. The top right image depicts fluxonium circuit components, and the bottom right image depicts a smaller area Josephson junction. Fluxonium Qubit.png
The left-most image shows a fluxonium superconducting loop consisting of a collection of larger area Josephson junctions and one smaller area Josephson junction, as shown by an electron microscope. The top right image depicts fluxonium circuit components, and the bottom right image depicts a smaller area Josephson junction.

Flux qubit

The flux qubit (also known as a persistent-current qubit) possesses a Josephson to charging energy ratio on the order of magnitude . For flux qubits, the energy levels correspond to different integer numbers of magnetic flux quanta trapped in a superconducting ring.

Fluxonium

Fluxonium qubits are a specific type of flux qubit whose Josephson junction is shunted by a linear inductor of where . [24] In practice, the linear inductor is usually implemented by a Josephson junction array that is composed of a large number (can be often ) of large-sized Josephson junctions connected in a series. Under this condition, the Hamiltonian of a fluxonium can be written as:

.

One important property of the fluxonium qubit is the longer qubit lifetime at the half flux sweet spot, which can exceed 1 millisecond. [24] [25] Another crucial advantage of the fluxonium qubit biased at the sweet spot is the large anharmonicity, which allows fast local microwave control and mitigates spectral crowding problems, leading to better scalability. [26] [27]

Charge qubit

The charge qubit, also known as the Cooper pair box, possesses a Josephson to charging energy ratio on the order of magnitude . For charge qubits, different energy levels correspond to an integer number of Cooper pairs on a superconducting island (a small superconducting area with a controllable number of charge carriers). [28] Indeed, the first experimentally realized qubit was the Cooper pair box, achieved in 1999. [29]

A device consisting of four superconducting transmon qubits, four quantum buses, and four readout resonators fabricated by IBM and published in npj Quantum Information in January 2017 4 Qubit, 4 Bus, 4 Resonator IBM Device (Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen, 2017).png
A device consisting of four superconducting transmon qubits, four quantum buses, and four readout resonators fabricated by IBM and published in npj Quantum Information in January 2017

Transmon

Transmons are a special type of qubit with a shunted capacitor specifically designed to mitigate noise. The transmon qubit model was based on the Cooper pair box [31] (illustrated in the table above in row one column one). It was also the first qubit to demonstrate quantum supremacy. [32] The increased ratio of Josephson to charge energy mitigates noise. Two transmons can be coupled using a coupling capacitor. [1] For this 2-qubit system the Hamiltonian is written

,

where is current density and is surface charge density. [1]

Xmon

The Xmon is very similar in design to a transmon in that it originated based on the planar transmon model. [33] An Xmon is essentially a tunable transmon. The major distinguishing difference between transmon and Xmon qubits is the Xmon qubits is grounded with one of its capacitor pads. [34]

Gatemon

Another variation of the transmon qubit is the Gatemon. Like the Xmon, the Gatemon is a tunable variation of the transmon. The Gatemon is tunable via gate voltage.

Superconducting circuit consisting of 3 Unimons (blue), each connected to resonators (red), drive lines (green), and joint probe lines (yellow) Chip unimon.png
Superconducting circuit consisting of 3 Unimons (blue), each connected to resonators (red), drive lines (green), and joint probe lines (yellow)

Unimon

In 2022 researchers from IQM Quantum Computers, Aalto University, and VTT Technical Research Centre of Finland discovered a novel superconducting qubit known as the Unimon. [36] A relatively simple qubit, the Unimon consists of a single Josephson junction shunted by a linear inductor (possessing an inductance not depending on current) inside a (superconducting) resonator. [37] Unimons have increased anharmocity and display faster operation time resulting in lower susceptibility to noise errors. [37] In addition to increased anharmocity, other advantages Unimon qubit include decreased susceptibility to flux noise and complete insensitivity to dc charge noise. [22]

Superconducting Qubit Archetypes [38]
Type
Aspect
Charge qubit RF-SQUID qubit (prototype of the Flux Qubit)Phase qubit
Circuit
Charge qubit circuit. A superconducting island (encircled with a dashed line) is defined between the leads of a capacitor with capacitance
C
{\displaystyle C}
and a Josephson junction with energy
E
J
{\displaystyle E_{J}}
biased by voltage
U
{\displaystyle U}
. Cooper pair box circuit.png
Charge qubit circuit. A superconducting island (encircled with a dashed line) is defined between the leads of a capacitor with capacitance and a Josephson junction with energy biased by voltage .
Flux qubit circuit. A superconducting loop with inductance
L
{\displaystyle L}
is interrupted by a junction with Josephson energy
E
J
{\displaystyle E_{J}}
. Bias flux
Ph
{\displaystyle \Phi }
is induced by a flux line with current
I
0
{\displaystyle I_{0}}
. Flux qubit circuit.svg
Flux qubit circuit. A superconducting loop with inductance is interrupted by a junction with Josephson energy . Bias flux is induced by a flux line with current .
Phase qubit circuit. A Josephson junction with energy parameter
E
J
{\displaystyle E_{J}}
is biased by current
I
0
{\displaystyle I_{0}}
. PhaseQBcirc.svg
Phase qubit circuit. A Josephson junction with energy parameter is biased by current .
Hamiltonian

In this case is the number of Cooper pairs to tunnel through the junction, is the charge on the capacitor in units of Cooper pairs number, is the charging energy associated with both capacitance and Josephson junction capacitance .

Note that is only allowed to take values greater than and is alternatively defined as the time integral of voltage along inductance .

Here is magnetic flux quantum.

Potential
U
=
-
E
J
cos
[?]
ph
{\displaystyle U=-E_{J}\cos \phi }
. Bias voltage is set such that
N
g
=
1
2
{\displaystyle N_{g}={\frac {1}{2}}}
, minimizing the energy gap between
|
0
> 
{\displaystyle |0\rangle }
and
|
1
> 
{\displaystyle |1\rangle }
, consequently distinguishing the gap from other energy gaps (e.g. gap between
|
1
> 
{\displaystyle |1\rangle }
and
|
2
> 
{\displaystyle |2\rangle }
). The difference in gaps allows addressing transitions from
|
0
> 
{\displaystyle |0\rangle }
to
|
1
> 
{\displaystyle |1\rangle }
and vice versa only, without populating other states. Charge qubit potential.svg
. Bias voltage is set such that , minimizing the energy gap between and , consequently distinguishing the gap from other energy gaps (e.g. gap between and ). The difference in gaps allows addressing transitions from to and vice versa only, without populating other states.
U
=
(
Ph
0
2
p
)
2
ph
2
2
L
-
E
J
cos
[?]
[
ph
-
Ph
2
p
Ph
0
]
{\displaystyle U=\left({\frac {\Phi _{0}}{2\pi }}\right)^{2}{\frac {\phi ^{2}}{2L}}-E_{J}\cos \left[\phi -\Phi {\frac {2\pi }{\Phi _{0}}}\right]}
Bias flux is
Ph
=
Ph
0
/
2
{\displaystyle \Phi =\Phi _{0}/2}
. Different wells correspond to a distinct number of flux quanta trapped in the superconducting loops. The two lower states correspond to a symmetrical and anti-symmetrical superposition of zero or single trapped flux quanta, sometimes denoted as clockwise and counterclockwise loop current states:
|
0
> 
=
[
|
V
> 
+
|
^
> 
]
/
2
{\displaystyle |0\rangle =\left[|\circlearrowleft \rangle +|\circlearrowright \rangle \right]/{\sqrt {2}}}
and
|
1
> 
=
[
|
V
> 
-
|
^
> 
]
/
2
{\displaystyle |1\rangle =\left[|\circlearrowleft \rangle -|\circlearrowright \rangle \right]/{\sqrt {2}}}
. Flux qubit potential.svg
Bias flux is . Different wells correspond to a distinct number of flux quanta trapped in the superconducting loops. The two lower states correspond to a symmetrical and anti-symmetrical superposition of zero or single trapped flux quanta, sometimes denoted as clockwise and counterclockwise loop current states: and .
U
=
-
I
0
Ph
0
2
p
ph
-
E
J
cos
[?]
ph
{\displaystyle U=-I_{0}{\frac {\Phi _{0}}{2\pi }}\phi -E_{J}\cos \phi }
, also known as "washboard" potential. Bias current is adjusted to allow wells shallow enough to contain exactly two localized wave functions. A slight increase in bias current causes a selective "spill" of higher energy state (
|
1
> 
{\displaystyle |1\rangle }
), expressed with a measurable voltage spike (a mechanism commonly used for phase qubit measurement). Phase qubit potential.svg
, also known as "washboard" potential. Bias current is adjusted to allow wells shallow enough to contain exactly two localized wave functions. A slight increase in bias current causes a selective "spill" of higher energy state (), expressed with a measurable voltage spike (a mechanism commonly used for phase qubit measurement).

In the table above, the three superconducting qubit archetypes are reviewed. In the first row, the qubit's electrical circuit diagram is presented. The second row depicts a quantum Hamiltonian derived from the circuit. Generally, the Hamiltonian is the sum of the system's kinetic and potential energy components (analogous to a particle in a potential well). For the Hamiltonians denoted, is the superconducting wave function phase difference across the junction, is the capacitance associated with the Josephson junction, and is the charge on the junction capacitance. For each potential depicted, only solid wave functions are used for computation. The qubit potential is indicated by a thick red line, and schematic wave function solutions are depicted by thin lines, lifted to their appropriate energy level for clarity.

Note that particle mass corresponds to an inverse function of the circuit capacitance and that the shape of the potential is governed by regular inductors and Josephson junctions. Schematic wave solutions in the third row of the table show the complex amplitude of the phase variable. Specifically, if a qubit's phase is measured while the qubit occupies a particular state, there is a non-zero probability of measuring a specific value only where the depicted wave function oscillates. All three rows are essentially different presentations of the same physical system.

Single qubits

The GHz energy gap between energy levels of a superconducting qubit is designed to be compatible with available electronic equipment, due to the terahertz gap (lack of equipment in the higher frequency band). The superconductor energy gap implies a top limit of operation below ~1THz beyond which Cooper pairs break, so energy level separation cannot be too high. On the other hand, energy level separation cannot be too small due to cooling considerations: a temperature of 1 K implies energy fluctuations of 20 GHz. Temperatures of tens of millikelvins are achieved in dilution refrigerators and allow qubit operation at a ~5 GHz energy level separation. Qubit energy level separation is frequently adjusted by controlling a dedicated bias current line, providing a "knob" to fine tune the qubit parameters.

Single qubit gates

A depiction of the Bloch sphere Bloch Sphere.svg
A depiction of the Bloch sphere

A single qubit gate is achieved by rotation in the Bloch sphere. Rotations between different energy levels of a single qubit are induced by microwave pulses sent to an antenna or transmission line coupled to the qubit with a frequency resonant with the energy separation between levels. Individual qubits may be addressed by a dedicated transmission line or by a shared one if the other qubits are off resonance. The axis of rotation is set by quadrature amplitude modulation of microwave pulse, while pulse length determines the angle of rotation. [39]

More formally (following the notation of [39] ) for a driving signal

of frequency , a driven qubit Hamiltonian in a rotating wave approximation is

,

where is the qubit resonance and are Pauli matrices.

To implement a rotation about the axis, one can set and apply a microwave pulse at frequency for time . The resulting transformation is

.

This is exactly the rotation operator by angle about the axis in the Bloch sphere. A rotation about the axis can be implemented in a similar way. Showing the two rotation operators is sufficient for satisfying universality as every single qubit unitary operator may be presented as (up to a global phase which is physically inconsequential) by a procedure known as the decomposition. [40] Setting results in the transformation

up to the global phase and is known as the NOT gate.

Coupling qubits

The ability to couple qubits is essential for implementing 2-qubit gates. Coupling two qubits can be achieved by connecting both to an intermediate electrical coupling circuit. The circuit may be either a fixed element (such as a capacitor) or be controllable (like the DC-SQUID). In the first case, decoupling qubits during the time the gate is switched off is achieved by tuning qubits out of resonance one from another, making the energy gaps between their computational states different. [41] This approach is inherently limited to nearest-neighbor coupling since a physical electrical circuit must be laid out between connected qubits. Notably, D-Wave Systems' nearest-neighbor coupling achieves a highly connected unit cell of 8 qubits in Chimera graph configuration. Quantum algorithms typically require coupling between arbitrary qubits. Consequently, multiple swap operations are necessary, limiting the length of quantum computation possible before processor decoherence.

Quantum bus

Another method of coupling two or more qubits is by way of a quantum bus, by pairing qubits to this intermediate. A quantum bus is often implemented as a microwave cavity modeled by a quantum harmonic oscillator. Coupled qubits may be brought in and out of resonance with the bus and with each other, eliminating the nearest-neighbor limitation. Formalism describing coupling is cavity quantum electrodynamics. In cavity quantum electrodynamics, qubits are analogous to atoms interacting with an optical photon cavity with a difference of GHz (rather than the THz regime of electromagnetic radiation). Resonant excitation exchange among these artificial atoms is potentially useful for direct implementation of multi-qubit gates. [42] Following the dark state manifold, the Khazali-Mølmer scheme [42] performs complex multi-qubit operations in a single step, providing a substantial shortcut to the conventional circuit model.

Cross resonant gate

One popular gating mechanism uses two qubits and a bus, each tuned to different energy level separations. Applying microwave excitation to the first qubit, with a frequency resonant with the second qubit, causes a rotation of the second qubit. Rotation direction depends on the state of the first qubit, allowing a controlled phase gate construction. [43]

Following the notation of, [43] the drive Hamiltonian describing the excited system through the first qubit driving line is formally written

,

where is the shape of the microwave pulse in time, is resonance frequency of the second qubit, are the Pauli matrices, is the coupling coefficient between the two qubits via the resonator, is qubit detuning, is stray (unwanted) coupling between qubits, and is the reduced Planck constant. The time integral over determines the angle of rotation. Unwanted rotations from the first and third terms of the Hamiltonian can be compensated for with single qubit operations. The remaining component, combined with single qubit rotations, forms a basis for the su(4) Lie algebra.

Geometric phase gate

Higher levels (outside of the computational subspace) of a pair of coupled superconducting circuits can be used to induce a geometric phase on one of the computational states of the qubits. This leads to an entangling conditional phase shift of the relevant qubit states. This effect has been implemented by flux-tuning the qubit spectra [44] and by using selective microwave driving. [45] Off-resonant driving can be used to induce differential ac-Stark shift, allowing the implementation of all-microwave controlled-phase gates. [46]

Heisenberg interactions

The Heisenberg model of interactions, written as

,

serves as the basis for analog quantum simulation of spin systems and the primitive for an expressive set of quantum gates, sometimes referred to as fermionic simulation (or fSim) gates. In superconducting circuits, this interaction model has been implemented using flux-tunable qubits with flux-tunable coupling, [47] allowing the demonstration of quantum supremacy. [48] In addition, it can also be realized in fixed-frequency qubits with fixed-coupling using microwave drives. [49] The fSim gate family encompasses arbitrary XY and ZZ two-qubit unitaries, including the iSWAP, the CZ, and the SWAP gates (see Quantum logic gate).

Qubit readout

Architecture-specific readout, or measurement, mechanisms exist. Readout of a phase qubit is explained in the qubit archetypes table above. A flux qubit state is often read using an adjustable DC-SQUID magnetometer. States may also be measured using an electrometer. [1] A more general readout scheme includes a coupling to a microwave resonator, where resonance frequency of the resonator is dispersively shifted by the qubit state. [50] [51] Multi-level systems (qudits) can be readout using electron shelving. [52]

DiVincenzo's criteria

DiVincenzo's criteria is a list describing the requirements for a physical system to be capable of implementing a logical qubit. DiVincenzo's criteria is satisfied by superconducting quantum computing implementation. Much of the current development effort in superconducting quantum computing aim to achieve interconnect, control, and readout in the 3rd dimension with additional lithography layers.The list of DiVincenzo's criteria for a physical system to implement a logical qubit is satisfied by the implementation of superconducting qubits. Although DiVincenzo's criteria as originally proposed consists of five criteria required for physically implementing a quantum computer, the more complete list consists of seven criteria as it takes into account communication over a computer network capable of transmitting quantum information between computers, known as the “quantum internet”. Therefore, the first five criteria ensure successful quantum computing, while the final two criteria allow for quantum communication.

  1. A scalable physical system with well characterized qubits. "Well characterized implies that that Hamiltonian function must be well-defined i.e the energy eigenstates of the qubit should be able to be quantified.. A scalable system is self-explanatory, it indicates that this ability to regulate a qubit should be augmentable for multiple more qubits. Herein lies the major issue Quantum Computers face, as more qubits are implemented it leads to a exponential increase in cost and other physical implementations which pale in comparison to the enhanced speed it may offer. [11] As superconducting qubits are fabricated on a chip, the many-qubit system is readily scalable. Qubits are allocated on the 2D surface of the chip. The demand for well characterized qubits is fulfilled with (a) qubit non-linearity (accessing only two of the available energy levels) and (b) accessing a single qubit at a time (rather than the entire many-qubit system) by way of per-qubit dedicated control lines and/or frequency separation, or tuning out, of different qubits.
  2. Ability to initialize the state of qubits to a simple fiducial state. [53] A fiducial state is one that is easily and consistently replicable and is useful in quantum computing as it may be used to guarantee the initial state of qubits. One simple way to initialize a superconducting qubit is to wait long enough for the qubits to relax to the ground state. Controlling qubit potential with tuning knobs allows faster initialization mechanisms.
  3. Long relevant decoherence times [53] . Decoherence of superconducting qubits is affected by multiple factors. Most decoherence is attributed to the quality of the Josephson junction and imperfections in the chip substrate. Due to their mesoscopic scale, superconducting qubits are relatively short lived. Nevertheless, thousands of gate operations have been demonstrated in these many-qubit systems. [54] Recent strategies to improve device coherence include purifying the circuit materials and designing qubits with decreased sensitivity to noise sources. [24]
  4. A "universal" set of quantum gates. [53] Superconducting qubits allow arbitrary rotations in the Bloch sphere with pulsed microwave signals, implementing single qubit gates. and couplings are shown for most implementations and for complementing the universal gate set. [55] [56] [49] This criterion may also be satisfied by coupling two transmons with a coupling capacitor. [1]
  5. Qubit-specific measurement ability. [53] In general, single superconducting qubits are used for control or for measurement.
  6. Interconvertibility of stationary and flying qubits. [53] While stationary qubits are used to store information or perform calculations, flying qubits transmit information macroscopically. Qubits should be capable of converting from being a stationary qubit to being a flying qubit and vice versa.
  7. Reliable transmission of flying qubits between specified locations. [53]

The final two criteria have been experimentally proven by research performed by ETH with two superconducting qubits connected by a coaxial cable. [57]

Challenges

One of the primary challenges of superconducting quantum computing is the extremely low temperatures at which superconductors like Bose-Einstein Condensates exist. Other basic challenges in superconducting qubit design are shaping the potential well and choosing particle mass such that energy separation between two specific energy levels is unique, differing from all other interlevel energy separation in the system, since these two levels are used as logical states of the qubit.

Superconducting quantum computing must also mitigate quantum noise (disruptions of the system caused by its interaction with an environment) as well as leakage (information being lost to the surrounding environment). One way to reduce leakage is with parity measurements. [16] Another strategy is to use qubits with large anharmonicity. [26] [27] Many current challenges faced by superconducting quantum computing lie in the field of microwave engineering. [50] As superconducting quantum computing approaches larger scale devices, researchers face difficulties in qubit coherence, scalable calibration software, efficient determination of fidelity of quantum states across an entire chip, and qubit and gate fidelity. [16] Moreover, superconducting quantum computing devices must be reliably reproducible at increasingly large scales such that they are compatible with these improvements. [16]

Journey of superconducting quantum computing:

Although not the newest development, the focus began to shift onto superconducting qubits in the latter half of the 1990s when quantum tunneling across Josephson junctions became apparent which allowed for the realization that quantum computing could be achieved through these superconducting qubits. [58]

At the end of the century in 1999, a paper [59] was published by Yasunobu Nakamura, which exhibited the initial design of a superconducting qubit which is now known as the "charge qubit". This is the primary basis point on which later designs amended upon. These initial qubits had their limitations in respect to maintaining long coherence times and destructive measurements. The further amendment to this initial breakthrough lead to the invention of the phase and flux qubit and subsequently resulting in the transmon qubit which is now widely and primarily used in Superconducting Quantum Computing.The transmon qubit has enhanced original designs and has further cushioned charge noise from the qubit. [58]

The journey has been long, arduous and full of breakthroughs but has seen significant advancements in the recent history and has massive potential for revolutionizing computing.

Future of superconducting quantum computing:

The sector's leading industry giants, like Google, IBM and Baidu, are using superconducting quantum computing and transmon qubits to make leaps and bounds in the area of quantum computing.

In August 2022, Baidu released its plans to build a fully integrated top to bottom quantum computer which incorporated superconducting qubits. This computer will be all encompassing with hardware, software and applications fully integrated. This is a first in the world of quantum computing and will lead to ground-breaking advancements. [60]

IBM released the following roadmap publicly that they have set for their quantum computers which also incorporated superconducting qubits and the transmon qubit.

2021: In 2021, IBM came out with their 127-qubit processor. [61]
2022: On November 9, IBM announced its 433 qubit processor called "Osprey". [62]
2023: IBM plan on releasing their Condor quantum processor with 1,121 qubits. [61]
2024: IBM plan on releasing their Flamingo quantum processor with 1,386+ qubits. [61]
2025: IBM plan on releasing their Kookaburra quantum processor with 4,158+ qubits. [61]
2026 and beyond: IBM plan on releasing a quantum processor that scaled beyond 10,000 qubits to a 100,000 qubits. [61]

Google in 2016, implemented 16 qubits to convey a demonstration of the Fermi-Hubbard Model. In another recent experiment, Google used 17 qubits to optimize the Sherrington-Kirkpatrick model. Google produced the Sycamore quantum computer which performed a task in 200 seconds that would have taken 10,000 years on a classical computer. [63]

Related Research Articles

<span class="mw-page-title-main">Timeline of quantum computing and communication</span>

This is a timeline of quantum computing.

In logic circuits, the Toffoli gate, also known as the CCNOT gate (“controlled-controlled-not”), invented by Tommaso Toffoli, is a CNOT gate with two control qubits and one target qubit. That is, the target qubit will be inverted if the first and second qubits are both 1. It is a universal reversible logic gate, which means that any classical reversible circuit can be constructed from Toffoli gates.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

<span class="mw-page-title-main">Charge qubit</span> Superconducting qubit implementation

In quantum computing, a charge qubit is a qubit whose basis states are charge states. In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction to a superconducting reservoir. The state of the qubit is determined by the number of Cooper pairs that have tunneled across the junction. In contrast with the charge state of an atomic or molecular ion, the charge states of such an "island" involve a macroscopic number of conduction electrons of the island. The quantum superposition of charge states can be achieved by tuning the gate voltage U that controls the chemical potential of the island. The charge qubit is typically read-out by electrostatically coupling the island to an extremely sensitive electrometer such as the radio-frequency single-electron transistor.

<span class="mw-page-title-main">Flux qubit</span> Superconducting qubit implementation

In quantum computing, more specifically in superconducting quantum computing, flux qubits are micrometer sized loops of superconducting metal that is interrupted by a number of Josephson junctions. These devices function as quantum bits. The flux qubit was first proposed by Terry P. Orlando et al. at MIT in 1999 and fabricated shortly thereafter. During fabrication, the Josephson junction parameters are engineered so that a persistent current will flow continuously when an external magnetic flux is applied. Only an integer number of flux quanta are allowed to penetrate the superconducting ring, resulting in clockwise or counter-clockwise mesoscopic supercurrents in the loop to compensate a non-integer external flux bias. When the applied flux through the loop area is close to a half integer number of flux quanta, the two lowest energy eigenstates of the loop will be a quantum superposition of the clockwise and counter-clockwise currents. The two lowest energy eigenstates differ only by the relative quantum phase between the composing current-direction states. Higher energy eigenstates correspond to much larger (macroscopic) persistent currents, that induce an additional flux quantum to the qubit loop, thus are well separated energetically from the lowest two eigenstates. This separation, known as the "qubit non linearity" criteria, allows operations with the two lowest eigenstates only, effectively creating a two level system. Usually, the two lowest eigenstates will serve as the computational basis for the logical qubit.

A Josephson junction (JJ) is a quantum mechanical device which is made of two superconducting electrodes separated by a barrier. A π Josephson junction is a Josephson junction in which the Josephson phase φ equals π in the ground state, i.e. when no external current or magnetic field is applied.

A quantum bus is a device which can be used to store or transfer information between independent qubits in a quantum computer, or combine two qubits into a superposition. It is the quantum analog of a classical bus.

In quantum computing, and more specifically in superconducting quantum computing, the phase qubit is a superconducting device based on the superconductor–insulator–superconductor (SIS) Josephson junction, designed to operate as a quantum bit, or qubit.

The superconducting tunnel junction (STJ) – also known as a superconductor–insulator–superconductor tunnel junction (SIS) – is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Current passes through the junction via the process of quantum tunneling. The STJ is a type of Josephson junction, though not all the properties of the STJ are described by the Josephson effect.

Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.

<span class="mw-page-title-main">Transmon</span> Superconducting qubit implementation

In quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin, and their colleagues at Yale University in 2007. Its name is an abbreviation of the term transmission line shunted plasma oscillation qubit; one which consists of a Cooper-pair box "where the two superconductors are also [capacitively] shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control".

Linear optical quantum computing or linear optics quantum computation (LOQC), also photonic quantum computing (PQC), is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

Superconducting logic refers to a class of logic circuits or logic gates that use the unique properties of superconductors, including zero-resistance wires, ultrafast Josephson junction switches, and quantization of magnetic flux (fluxoid). As of 2023, superconducting computing is a form of cryogenic computing, as superconductive electronic circuits require cooling to cryogenic temperatures for operation, typically below 10 kelvin. Often superconducting computing is applied to quantum computing, with an important application known as superconducting quantum computing.

<span class="mw-page-title-main">Yasunobu Nakamura</span> Japanese physicist

Yasunobu Nakamura (中村 泰信 Nakamura Yasunobu) is a Japanese physicist. He is a professor at the University of Tokyo's Research Center for Advanced Science and Technology (RCAST) and the Principal Investigator of the Superconducting Quantum Electronics Research Group (SQERG) at the Center for Emergent Matter Science (CEMS) within RIKEN. He has contributed primarily to the area of quantum information science, particularly in superconducting quantum computing and hybrid quantum systems.

IBM Quantum Platform is an online platform allowing public and premium access to cloud-based quantum computing services provided by IBM. This includes access to a set of IBM's prototype quantum processors, a set of tutorials on quantum computation, and access to an interactive textbook. As of February 2021, there are over 20 devices on the service, six of which are freely available for the public. This service can be used to run algorithms and experiments, and explore tutorials and simulations around what might be possible with quantum computing.

Andreas Wallraff is a German physicist who conducts research in quantum information processing and quantum optics. He has taught as a professor at ETH Zürich in Zürich, Switzerland since 2006. He worked as a research scientist with Robert J. Schoelkopf at Yale University from 2002 to 2005, during which time he performed experiments in which the coherent interaction of a single photon with a single quantum electronic circuit was observed for the first time. His current work at ETH Zürich focuses on hybrid quantum systems combining superconducting electronic circuits with semiconductor quantum dots and individual Rydberg atoms as well as quantum error correction with superconducting qubits.

In quantum computing, Mølmer–Sørensen gate scheme refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999-2000.

In quantum computing, a qubit is a unit of information analogous to a bit in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations.

This glossary of quantum computing is a list of definitions of terms and concepts used in quantum computing, its sub-disciplines, and related fields.

References

  1. 1 2 3 4 5 6 "PennyLane Documentation — PennyLane". docs.pennylane.ai. Retrieved 2022-12-11.
  2. Castelvecchi, Davide (5 January 2017). "Quantum computers ready to leap out of the lab in 2017". Nature. 541 (7635): 9–10. Bibcode:2017Natur.541....9C. doi: 10.1038/541009a . PMID   28054624. S2CID   4447373.
  3. 1 2 "IBM Makes Quantum Computing Available on IBM Cloud". www-03.ibm.com. 4 May 2016. Archived from the original on May 4, 2016.
  4. "Imec enters the race to unleash quantum computing with silicon qubits". www.imec-int.com. Retrieved 2019-11-10.
  5. Colm A. Ryan, Blake R. Johnson, Diego Ristè, Brian Donovan, Thomas A. Ohki, "Hardware for Dynamic Quantum Computing", arXiv:1704.08314v1
  6. "Rigetti Launches Quantum Cloud Services, Announces $1Million Challenge". HPCwire. 2018-09-07. Retrieved 2018-09-16.
  7. "Intel Invests US$50 Million to Advance Quantum Computing | Intel Newsroom". Intel Newsroom.
  8. Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M. (4 March 2015). "State preservation by repetitive error detection in a superconducting quantum circuit". Nature. 519 (7541): 66–69. arXiv: 1411.7403 . Bibcode:2015Natur.519...66K. doi:10.1038/nature14270. PMID   25739628. S2CID   3032369.
  9. Arute, Frank; Arya, Kunal; Babbush, Ryan; Bacon, Dave; Bardin, Joseph C.; Barends, Rami; Biswas, Rupak; Boixo, Sergio; Brandao, Fernando G. S. L.; Buell, David A.; Burkett, Brian; Chen, Yu; Chen, Zijun; Chiaro, Ben; Collins, Roberto; Courtney, William; Dunsworth, Andrew; Farhi, Edward; Foxen, Brooks; Fowler, Austin; Gidney, Craig; Giustina, Marissa; Graff, Rob; Guerin, Keith; Habegger, Steve; Harrigan, Matthew P.; Hartmann, Michael J.; Ho, Alan; Hoffmann, Markus; Huang, Trent; Humble, Travis S.; Isakov, Sergei V.; Jeffrey, Evan; Jiang, Zhang; Kafri, Dvir; Kechedzhi, Kostyantyn; Kelly, Julian; Klimov, Paul V.; Knysh, Sergey; Korotkov, Alexander; Kostritsa, Fedor; Landhuis, David; Lindmark, Mike; Lucero, Erik; Lyakh, Dmitry; Mandrà, Salvatore; McClean, Jarrod R.; McEwen, Matthew; Megrant, Anthony; Mi, Xiao; Michielsen, Kristel; Mohseni, Masoud; Mutus, Josh; Naaman, Ofer; Neeley, Matthew; Neill, Charles; Niu, Murphy Yuezhen; Ostby, Eric; Petukhov, Andre; Platt, John C.; Quintana, Chris; Rieffel, Eleanor G.; Roushan, Pedram; Rubin, Nicholas C.; Sank, Daniel; Satzinger, Kevin J.; Smelyanskiy, Vadim; Sung, Kevin J.; Trevithick, Matthew D.; Vainsencher, Amit; Villalonga, Benjamin; White, Theodore; Yao, Z. Jamie; Yeh, Ping; Zalcman, Adam; Neven, Hartmut; Martinis, John M. (October 2019). "Quantum supremacy using a programmable superconducting processor". Nature. 574 (7779): 505–510. arXiv: 1910.11333 . Bibcode:2019Natur.574..505A. doi: 10.1038/s41586-019-1666-5 . PMID   31645734.
  10. Dayal, Geeta. "LEGO Turing Machine Is Simple, Yet Sublime". WIRED.
  11. 1 2 "DiVincenzo's Criteria – Quantum Computing Codex". qc-at-davis.github.io. Retrieved 2022-12-13.
  12. 1 2 Ballon, Alvaro (22 March 2022). "Quantum computing with superconducting qubits — PennyLane". Pennylane Demos. Retrieved 2022-12-13.
  13. "Cooper Pairs".
  14. Shen, L. Y. L. (1972-02-01). "Superconductivity of Tantalum, Niobium and Lanthanum Studied by Electron Tunneling: Problems of Surface Contamination". AIP Conference Proceedings. 4 (1): 31–44. Bibcode:1972AIPC....4...31S. doi:10.1063/1.2946195. ISSN   0094-243X.
  15. Greicius, Tony (2020-06-12). "NASA's Cold Atom Lab Takes One Giant Leap for Quantum Science". NASA. Retrieved 2022-12-11.
  16. 1 2 3 4 5 Kjaergaard, Morten; Schwartz, Mollie E.; Braumüller, Jochen; Krantz, Philip; Wang, Joel I.-Jan; Gustavsson, Simon; Oliver, William D. (2020-03-10). "Superconducting Qubits: Current State of Play". Annual Review of Condensed Matter Physics. 11 (1): 369–395. arXiv: 1905.13641 . Bibcode:2020ARCMP..11..369K. doi:10.1146/annurev-conmatphys-031119-050605. ISSN   1947-5454. S2CID   173188891.
  17. Manucharyan, V. E.; Koch, J.; Glazman, L. I.; Devoret, M. H. (1 October 2009). "Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets". Science. 326 (5949): 113–116. arXiv: 0906.0831 . Bibcode:2009Sci...326..113M. doi:10.1126/science.1175552. PMID   19797655. S2CID   17645288.
  18. Houck, A. A.; Koch, Jens; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J. (11 February 2009). "Life after charge noise: recent results with transmon qubits". Quantum Information Processing. 8 (2–3): 105–115. arXiv: 0812.1865 . doi:10.1007/s11128-009-0100-6. S2CID   27305073.
  19. Barends, R.; Kelly, J.; Megrant, A.; Sank, D.; Jeffrey, E.; Chen, Y.; Yin, Y.; Chiaro, B.; Mutus, J.; Neill, C.; O’Malley, P.; Roushan, P.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M. (22 August 2013). "Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits". Physical Review Letters. 111 (8): 080502. arXiv: 1304.2322 . Bibcode:2013PhRvL.111h0502B. doi:10.1103/PhysRevLett.111.080502. PMID   24010421. S2CID   27081288.
  20. Metcalfe, M.; Boaknin, E.; Manucharyan, V.; Vijay, R.; Siddiqi, I.; Rigetti, C.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H. (21 November 2007). "Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier". Physical Review B. 76 (17): 174516. arXiv: 0706.0765 . Bibcode:2007PhRvB..76q4516M. doi:10.1103/PhysRevB.76.174516. S2CID   19088840.
  21. 1 2 3 4 Martinis, John M.; Osborne, Kevin (2004-02-16). "Superconducting Qubits and the Physics of Josephson Junctions". arXiv: cond-mat/0402415 . Bibcode:2004cond.mat..2415M.{{cite journal}}: Cite journal requires |journal= (help)
  22. 1 2 3 Hyyppä, Eric; Kundu, Suman; Chan, Chun Fai; Gunyhó, András; Hotari, Juho; Janzso, David; Juliusson, Kristinn; Kiuru, Olavi; Kotilahti, Janne; Landra, Alessandro; Liu, Wei; Marxer, Fabian; Mäkinen, Akseli; Orgiazzi, Jean-Luc; Palma, Mario (2022-11-12). "Unimon qubit". Nature Communications. 13 (1): 6895. arXiv: 2203.05896 . Bibcode:2022NatCo..13.6895H. doi:10.1038/s41467-022-34614-w. ISSN   2041-1723. PMC   9653402 . PMID   36371435.
  23. 1 2 Cottet, Nathanaël; Xiong, Haonan; Nguyen, Long B.; Lin, Yen-Hsiang; Manucharyan, Vladimir E. (2021-11-04). "Electron shelving of a superconducting artificial atom". Nature Communications. 12 (1): 6383. arXiv: 2008.02423 . Bibcode:2021NatCo..12.6383C. doi:10.1038/s41467-021-26686-x. ISSN   2041-1723. PMC   8569191 . PMID   34737313.
  24. 1 2 3 Nguyen, Long B.; Lin, Yen-Hsiang; Somoroff, Aaron; Mencia, Raymond; Grabon, Nicholas; Manucharyan, Vladimir E. (25 November 2019). "High-Coherence Fluxonium Qubit". Physical Review X. 9 (4): 041041. arXiv: 1810.11006 . Bibcode:2019PhRvX...9d1041N. doi:10.1103/PhysRevX.9.041041. ISSN   2160-3308. S2CID   53499609.
  25. Science, The National University of; MISIS, Technology. "Fluxonium qubits bring the creation of a quantum computer closer". phys.org. Retrieved 2022-12-12.
  26. 1 2 Nguyen, Long B. (2020). Toward the Fluxonium Quantum Processor (Ph.D. thesis). University of Maryland, College Park.
  27. 1 2 Nguyen, Long B.; Koolstra, Gerwin; Kim, Yosep; Morvan, Alexis; Chistolini, Trevor; Singh, Shraddha; Nesterov, Konstantin N.; Jünger, Christian; Chen, Larry; Pedramrazi, Zahra; Mitchell, Bradley K.; Kreikebaum, John Mark; Puri, Shruti; Santiago, David I.; Siddiqi, Irfan (5 August 2022). "Blueprint for a High-Performance Fluxonium Quantum Processor". PRX Quantum. 3 (3): 037001. arXiv: 2201.09374 . Bibcode:2022PRXQ....3c7001N. doi: 10.1103/PRXQuantum.3.037001 .
  28. "Superconducting qubits – on islands, charge qubits and the transmon". LeftAsExercise. 2019-06-06. Retrieved 2022-12-12.
  29. Wendin, G. (2017-10-01). "Quantum information processing with superconducting circuits: a review". Reports on Progress in Physics. 80 (10): 106001. arXiv: 1610.02208 . Bibcode:2017RPPh...80j6001W. doi:10.1088/1361-6633/aa7e1a. ISSN   0034-4885. PMID   28682303. S2CID   3940479.
  30. Gambetta, J. M.; Chow, J. M.; Steffen, M. (2017). "Building logical qubits in a superconducting quantum computing system". npj Quantum Information. 3 (1): 2. arXiv: 1510.04375 . Bibcode:2017npjQI...3....2G. doi: 10.1038/s41534-016-0004-0 .
  31. Roth, Thomas E.; Ma, Ruichao; Chew, Weng C. (2021-06-21). "An Introduction to the Transmon Qubit for Electromagnetic Engineers". arXiv: 2106.11352 .{{cite journal}}: Cite journal requires |journal= (help)
  32. Kjaergaard, Morten; Schwartz, Mollie E.; Braumüller, Jochen; Krantz, Philip; Wang, Joel I.-J.; Gustavsson, Simon; Oliver, William D. (2020-03-10). "Superconducting Qubits: Current State of Play". Annual Review of Condensed Matter Physics. 11 (1): 369–395. arXiv: 1905.13641 . Bibcode:2020ARCMP..11..369K. doi:10.1146/annurev-conmatphys-031119-050605. ISSN   1947-5454. S2CID   173188891.
  33. Shim, Yun-Pil; Tahan, Charles (2016-03-17). "Semiconductor-inspired design principles for superconducting quantum computing". Nature Communications. 7 (1): 11059. arXiv: 1507.07923 . Bibcode:2016NatCo...711059S. doi:10.1038/ncomms11059. ISSN   2041-1723. PMC   4800439 . PMID   26983379.
  34. Wang, Chenlu; Li, Xuegang; Xu, Huikai; Li, Zhiyuan; Wang, Junhua; Yang, Zhen; Mi, Zhenyu; Liang, Xuehui; Su, Tang; Yang, Chuhong; Wang, Guangyue; Wang, Wenyan; Li, Yongchao; Chen, Mo; Li, Chengyao (2022-01-13). "Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds". npj Quantum Information. 8 (1): 3. arXiv: 2105.09890 . Bibcode:2022npjQI...8....3W. doi:10.1038/s41534-021-00510-2. ISSN   2056-6387. S2CID   245950831.
  35. "Fig. 1: Unimon qubit and its measurement setup. | Nature Communications".{{cite journal}}: Cite journal requires |journal= (help)
  36. "Unimon: A new qubit to boost quantum computers from IQM | IQM". www.meetiqm.com. Retrieved 2022-12-12.
  37. 1 2 Buchanan, Mark (2022-12-08). "Meet the Unimon, the New Qubit on the Block". Physics. 15: 191. Bibcode:2022PhyOJ..15..191B. doi: 10.1103/Physics.15.191 . S2CID   257514449.
  38. Devoret, M. H.; Wallraff, A.; Martinis, J. M. (6 November 2004). "Superconducting Qubits: A Short Review". arXiv: cond-mat/0411174 .
  39. 1 2 Motzoi, F.; Gambetta, J. M.; Rebentrost, P.; Wilhelm, F. K. (8 September 2009). "Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits". Physical Review Letters. 103 (11): 110501. arXiv: 0901.0534 . Bibcode:2009PhRvL.103k0501M. doi:10.1103/PhysRevLett.103.110501. PMID   19792356. S2CID   7288207.
  40. Chuang, Michael A. Nielsen & Isaac L. (2010). Quantum computation and quantum information (10th anniversary ed.). Cambridge: Cambridge University Press. pp.  174–176. ISBN   978-1-107-00217-3.
  41. Rigetti, Chad Tyler (2009). Quantum gates for superconducting qubits. p. 21. Bibcode:2009PhDT........50R. ISBN   9781109198874.
  42. 1 2 Khazali, Mohammadsadegh; Mølmer, Klaus (2020-06-11). "Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits". Physical Review X. 10 (2): 021054. arXiv: 2006.07035 . Bibcode:2020PhRvX..10b1054K. doi: 10.1103/PhysRevX.10.021054 . ISSN   2160-3308.
  43. 1 2 Chow, Jerry M.; Córcoles, A. D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, B. R.; Smolin, John A.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M. (17 August 2011). "Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits". Physical Review Letters. 107 (8): 080502. arXiv: 1106.0553 . Bibcode:2011PhRvL.107h0502C. doi:10.1103/PhysRevLett.107.080502. PMID   21929152. S2CID   9302474.
  44. DiCarlo, L.; Chow, J. M.; Gambetta, J. M.; Bishop, Lev S.; Johnson, B. R.; Schuster, D. I.; Majer, J.; Blais, A.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J. (2009-06-28). "Demonstration of two-qubit algorithms with a superconducting quantum processor". Nature. 460 (7252). Springer Science and Business Media LLC: 240–244. doi:10.1038/nature08121. ISSN   0028-0836.
  45. Ficheux, Quentin; Nguyen, Long B.; Somoroff, Aaron; Xiong, Haonan; Nesterov, Konstantin N.; Vavilov, Maxim G.; Manucharyan, Vladimir E. (2021-05-03). "Fast Logic with Slow Qubits: Microwave-Activated Controlled-Z Gate on Low-Frequency Fluxoniums". Physical Review X. 11 (2). arXiv: 2011.02634 . doi:10.1103/PhysRevX.11.021026. ISSN   2160-3308.
  46. Xiong, Haonan; Ficheux, Quentin; Somoroff, Aaron; Nguyen, Long B.; Dogan, Ebru; Rosenstock, Dario; Wang, Chen; Nesterov, Konstantin N.; Vavilov, Maxim G.; Manucharyan, Vladimir E. (2022-04-15). "Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts". Physical Review Research. 4 (2). arXiv: 2103.04491 . doi:10.1103/PhysRevResearch.4.023040. ISSN   2643-1564.
  47. Foxen, B.; Neill, C.; Dunsworth, A.; Roushan, P.; Chiaro, B.; Megrant, A.; Kelly, J.; Chen, Zijun; Satzinger, K.; Barends, R.; Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.; Boixo, S.; Buell, D.; Burkett, B.; Chen, Yu; Collins, R.; Farhi, E.; Fowler, A.; Gidney, C.; Giustina, M.; Graff, R.; Harrigan, M.; Huang, T.; Isakov, S. V.; Jeffrey, E.; Jiang, Z.; Kafri, D.; Kechedzhi, K.; Klimov, P.; Korotkov, A.; Kostritsa, F.; Landhuis, D.; Lucero, E.; McClean, J.; McEwen, M.; Mi, X.; Mohseni, M.; Mutus, J. Y.; Naaman, O.; Neeley, M.; Niu, M.; Petukhov, A.; Quintana, C.; Rubin, N.; Sank, D.; Smelyanskiy, V.; Vainsencher, A.; White, T. C.; Yao, Z.; Yeh, P.; Zalcman, A.; Neven, H.; Martinis, J. M.; Google AI Quantum (2020-09-15). "Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms". Physical Review Letters. 125 (12). arXiv: 2001.08343 . doi:10.1103/PhysRevLett.125.120504. ISSN   0031-9007.{{cite journal}}: |author58= has generic name (help)
  48. Arute, Frank; Arya, Kunal; Babbush, Ryan; Bacon, Dave; Bardin, Joseph C.; Barends, Rami; Biswas, Rupak; Boixo, Sergio; Brandao, Fernando G. S. L.; Buell, David A.; Burkett, Brian; Chen, Yu; Chen, Zijun; Chiaro, Ben; Collins, Roberto; Courtney, William; Dunsworth, Andrew; Farhi, Edward; Foxen, Brooks; Fowler, Austin; Gidney, Craig; Giustina, Marissa; Graff, Rob; Guerin, Keith; Habegger, Steve; Harrigan, Matthew P.; Hartmann, Michael J.; Ho, Alan; Hoffmann, Markus; Huang, Trent; Humble, Travis S.; Isakov, Sergei V.; Jeffrey, Evan; Jiang, Zhang; Kafri, Dvir; Kechedzhi, Kostyantyn; Kelly, Julian; Klimov, Paul V.; Knysh, Sergey; Korotkov, Alexander; Kostritsa, Fedor; Landhuis, David; Lindmark, Mike; Lucero, Erik; Lyakh, Dmitry; Mandrà, Salvatore; McClean, Jarrod R.; McEwen, Matthew; Megrant, Anthony; Mi, Xiao; Michielsen, Kristel; Mohseni, Masoud; Mutus, Josh; Naaman, Ofer; Neeley, Matthew; Neill, Charles; Niu, Murphy Yuezhen; Ostby, Eric; Petukhov, Andre; Platt, John C.; Quintana, Chris; Rieffel, Eleanor G.; Roushan, Pedram; Rubin, Nicholas C.; Sank, Daniel; Satzinger, Kevin J.; Smelyanskiy, Vadim; Sung, Kevin J.; Trevithick, Matthew D.; Vainsencher, Amit; Villalonga, Benjamin; White, Theodore; Yao, Z. Jamie; Yeh, Ping; Zalcman, Adam; Neven, Hartmut; Martinis, John M. (2019-10-23). "Quantum supremacy using a programmable superconducting processor". Nature. 574 (7779). Springer Science and Business Media LLC: 505–510. arXiv: 1910.11333 . doi:10.1038/s41586-019-1666-5. ISSN   0028-0836.
  49. 1 2 Nguyen, L.B.; Kim, Y.; Hashim, A.; Goss, N.; Marinelli, B.; Bhandari, B.; Das, D.; Naik, R.K.; Kreikebaum, J.M.; Jordan, A.; Santiago, D.I.; Siddiqi, I. (16 January 2024). "Programmable Heisenberg interactions between Floquet qubits". Nature Physics. 20 (1): 240–246. arXiv: 2211.10383 . Bibcode:2024NatPh..20..240N. doi: 10.1038/s41567-023-02326-7 .
  50. 1 2 Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias (13 January 2017). "Building logical qubits in a superconducting quantum computing system". npj Quantum Information . 3 (1): 2. arXiv: 1510.04375 . Bibcode:2017npjQI...3....2G. doi: 10.1038/s41534-016-0004-0 .
  51. Blais, Alexandre; Huang, Ren-Shou; Wallraff, Andreas; Girvin, Steven; Schoelkopf, Robert (2004). "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation". Phys. Rev. A. 69 (6): 062320. arXiv: cond-mat/0402216 . Bibcode:2004PhRvA..69f2320B. doi:10.1103/PhysRevA.69.062320. S2CID   20427333.
  52. Cottet, Nathanaël; Xiong, Haonan; Nguyen, Long B.; Lin, Yen-Hsiang; Manucharyan, Vladimir E. (2021-11-04). "Electron shelving of a superconducting artificial atom". Nature Communications. 12 (1). Springer Science and Business Media LLC. arXiv: 2008.02423 . doi:10.1038/s41467-021-26686-x. ISSN   2041-1723.
  53. 1 2 3 4 5 6 DiVincenzo, David (February 1, 2008). "The Physical Implementation of Quantum Computation". IBM T.J. Watson Research Center. 48 (9–11): 771–783. arXiv: quant-ph/0002077 . Bibcode:2000ForPh..48..771D. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. S2CID   15439711.
  54. Devoret, M. H.; Schoelkopf, R. J. (7 March 2013). "Superconducting Circuits for Quantum Information: An Outlook". Science. 339 (6124): 1169–1174. Bibcode:2013Sci...339.1169D. doi:10.1126/science.1231930. PMID   23471399. S2CID   10123022.
  55. Chow, Jerry M.; Gambetta, Jay M.; Córcoles, A. D.; Merkel, Seth T.; Smolin, John A.; Rigetti, Chad; Poletto, S.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Ketchen, Mark B.; Steffen, M. (9 August 2012). "Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits". Physical Review Letters. 109 (6): 060501. arXiv: 1202.5344 . Bibcode:2012PhRvL.109f0501C. doi:10.1103/PhysRevLett.109.060501. PMID   23006254. S2CID   39874288.
  56. Niskanen, A. O.; Harrabi, K.; Yoshihara, F.; Nakamura, Y.; Lloyd, S.; Tsai, J. S. (4 May 2007). "Quantum Coherent Tunable Coupling of Superconducting Qubits". Science. 316 (5825): 723–726. Bibcode:2007Sci...316..723N. doi:10.1126/science.1141324. PMID   17478714. S2CID   43175104.
  57. Morsch, Oliver; Zurich, E. T. H. "Quantum transfer at the push of a button". phys.org. Retrieved 2022-12-09.
  58. 1 2 Qiskit (2022-09-28). "How The First Superconducting Qubit Changed Quantum Computing Forever". Qiskit. Retrieved 2022-12-13.
  59. Nakamura, Y.; Pashkin, Yu A.; Tsai, J. S. (April 1999). "Coherent control of macroscopic quantum states in a single-Cooper-pair box". Nature. 398 (6730): 786–788. arXiv: cond-mat/9904003 . Bibcode:1999Natur.398..786N. doi:10.1038/19718. ISSN   0028-0836. S2CID   4392755.
  60. "Baidu Releases Superconducting Quantum Computer and World's First All-Platform Integration Solution, Making Quantum Computing Within Reach". www.prnewswire.com (Press release). Retrieved 2022-12-13.
  61. 1 2 3 4 5 "IBM Quantum roadmap to build quantum-centric supercomputers". IBM Research Blog. 2021-02-09. Retrieved 2022-12-13.
  62. Lardinois, Frederic (2022-11-09). "IBM unveils its 433 qubit Osprey quantum computer". TechCrunch. Retrieved 2022-12-13.
  63. "Our quantum computing journey". Google Quantum AI. Retrieved 2022-12-13.

Further reading