Parity measurement

Last updated
Quantum circuit that exhibits Parity measurement Quantum circuit that exhibits Parity Measurement.png
Quantum circuit that exhibits Parity measurement

Parity measurement (also referred to as Operator measurement) is a procedure in quantum information science used for error detection in quantum qubits. A parity measurement checks the equality of two qubits to return a true or false answer, which can be used to determine whether a correction needs to occur. [1] Additional measurements can be made for a system greater than two qubits. Because parity measurement does not measure the state of singular bits but rather gets information about the whole state, it is considered an example of a joint measurement. Joint measurements do not have the consequence of destroying the original state of a qubit as normal quantum measurements do. [2] Mathematically speaking, parity measurements are used to project a state into an eigenstate of an operator and to acquire its eigenvalue.[ citation needed ]

Contents

Parity measurement is an essential concept of quantum error correction. From the parity measurement, an appropriate unitary operation can be applied to correct the error without knowing the beginning state of the qubit. [3]

Parity and parity checking

A qubit is a two-level system, and when we measure one qubit, we can have either 1 or 0 as a result. One corresponds to odd parity, and zero corresponds to even parity. This is what a parity check is. This idea can be generalized beyond single qubits. This can be generalized beyond a single qubit and it is useful in QEC. The idea of parity checks in QEC is to have just parity information of multiple data qubits over one (auxiliary) qubit without revealing any other information. Any unitary can be used for the parity check. If we want to have the parity information of a valid quantum observable U, we need to apply the controlled-U gates between the ancilla qubit and the data qubits sequentially. For example, for making parity check measurement in the X basis, we need to apply CNOT gates between the ancilla qubit and the data qubits sequentially since the controlled gate in this case is a CNOT (CX) gate. [4]

The unique state of the ancillary qubit is then used to determine either even or odd parity of the qubits. When the qubits of the input states are equal, an even parity will be measured, indicating that no error has occurred. When the qubits are unequal, an odd parity will be measured, indicating a single bit-flip error. [5]

With more than two qubits, additional parity measurements can be performed to determine if the qubits are the same value, and if not, to find which is the outlier. For example, in a system of three qubits, one can first perform a parity measurement on the first and second qubit, and then on the first and third qubit. Specifically, one is measuring to determine if an error has occurred on the first two qubits, and then to determine if an error has occurred on the first and third qubits.[ citation needed ]

In a circuit, an ancillary qubit is prepared in the state. During measurement, a CNOT gate is performed on the ancillary bit dependent on the first qubit being checked, followed by a second CNOT gate performed on the ancillary bit dependent on the second qubit being checked. If these qubits are the same, the double CNOT gates will revert the ancillary qubit to its initial state, which indicates even parity. If these qubits are not the same, the double CNOT gates will alter the ancillary qubit to the opposite state, which indicates odd parity. [1] Looking at the ancillary qubits, a corresponding correction can be performed.

Alternatively, the parity measurement can be thought of as a projection of a qubit state into an eigenstate of an operator and to acquire its eigenvalue. For the measurement, checking the ancillary qubit in the basis will return the eigenvalue of the measurement. If the eigenvalue here is measured to be +1, this indicates even parity of the bits without error. If the eigenvalue is measured to be -1, this indicates odd parity of the bits with a bit-flip error.[ citation needed ]

Example

Alice, a sender, wants to transmit a qubit to Bob, a receiver. The state of any qubit that Alice would wish to send can be written as where and are coefficients. Alice encodes this into three qubits, so that the initial state she transmits is . Following noise in the channel, the three qubits state can be seen in the following table with the corresponding probability: [1]

State Changes following Noise in a Quantum Circuit
Qubit StateProbabilityAncillary QubitsCorrection
not needed
apply to first qubit
apply to second qubit
apply to third qubit
apply to third qubit
apply to second qubit
apply to first qubit
not needed

A parity measurement can be performed on the altered state, with two ancillary qubits storing the measurement. First, the first and second qubits' parity is checked. If they are equal, a is stored in the first ancillary qubit. If they are not equal, a is stored in the first ancillary qubit. The same action is performed comparing the first and third qubits, with the check being stored in the second ancillary qubit. Important to note is that we do not actually need to know the input qubit state, and can perform the CNOT operations indicating the parity without this knowledge. The ancillary qubits are what indicates what bit has been altered, and the correction operation can be performed as needed. [1]

Parity Measurement in Quantum Error Correction Parity Circuit.png
Parity Measurement in Quantum Error Correction

An easy way to visualize this is in the circuit above. First, the input state is encoded into 3 bits, and parity checks are performed with subsequent error correction performed based on the results of the ancilla qubits at the bottom. Finally, decoding is performing to put get back to the same basis of the input state.

Parity check matrix

A parity check matrix for a quantum circuit can also be constructed using these principles. For some message x encoded as Gx, where G corresponds to the generator matrix, Hx = 0 where H is the parity matrix containing 0's and 1's for a situation where there is no error. However, if an error occurs at one component, then the pattern in the errors can be used to find which bit is incorrect. [3]

Types of parity measurements

Two types of parity measurement are indirect and direct. Indirect parity measurements coincide with the typical way we think of parity measurement as described above, by measuring an ancilla qubit to determine the parity of the input bits. Direct parity measurements differ from the previous type in that a common mode with the parities coupled to the qubits is measured, without the need for an ancilla qubit. While indirect parity measurements can put a strain on experimental capacity, direct measurements may interfere with the fidelity of the initial states. [6]

Example

For example, given a Hermitian and Unitary operator (whose eigenvalues are ) and a state , the circuit on the top right performs a Parity measurement on . After the first Hadamard gate, the state of the circuit is

After applying the controlled-U gate, the state of the circuit evolves to

After applying the second Hadamard gate, the state of the circuit turns into

If the state of the top qubit after measurement is , then ; which is the eigenstate of . If the state of the top qubit is , then ; which is the eigenstate of . [5]

Experiments and applications

In experiments, parity measurements are not only a mechanism for quantum error correction, but they can also help combat non-ideal conditions. Given the existent possibility for bit flip errors, there is an additional likelihood for errors as a result of leakage. This phenomenon is due to unused high-energy qubits becoming excited. It has been demonstrated in superconducting transmon qubits that parity measurements can be applied repetitively during quantum error correction to remove leakage errors. [7] Repetitive parity measurements can be used to stabilize an entangled state and prevent leakage errors (which normally is not possible with typical quantum error correction), but the first group to accomplish this did so in 2020. By performing interleaving XX and ZZ checks, which can ultimately tell whether an X (bit), Y (iXZ), or Z (phase) flip error occurs. The outcomes of these parity measurements of ancilla qubits are used with Hidden Markov Models to complete leakage detection and correction. [8]

Related Research Articles

<span class="mw-page-title-main">BQP</span> Computational complexity class of problems

In computational complexity theory, bounded-error quantum polynomial time (BQP) is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances. It is the quantum analogue to the complexity class BPP.

In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Qubit</span> Basic unit of quantum information

In quantum computing, a qubit or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing.

Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical algorithms. On the other hand, factoring numbers of practical significance requires far more qubits than available in the near future. Another concern is that noise in quantum circuits may undermine results, requiring additional qubits for quantum error correction.

<span class="mw-page-title-main">Quantum superposition</span> Principle of quantum mechanics

Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position. More precisely, the state of a system is given by a linear combination of all the eigenfunctions of the Schrödinger equation governing that system.

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. Quantum logic gates are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.

Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements. This would allow algorithms of greater circuit depth.

In quantum information science, the Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will "collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell's state the two qubits are in initially. Bell's states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for three or more subsystems.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

<span class="mw-page-title-main">Superdense coding</span> Two-bit quantum communication protocol

In quantum information theory, superdense coding is a quantum communication protocol to communicate a number of classical bits of information by only transmitting a smaller number of qubits, under the assumption of sender and receiver pre-sharing an entangled resource. In its simplest form, the protocol involves two parties, often referred to as Alice and Bob in this context, which share a pair of maximally entangled qubits, and allows Alice to transmit two bits to Bob by sending only one qubit. This protocol was first proposed by Charles H. Bennett and Stephen Wiesner in 1970 and experimentally actualized in 1996 by Klaus Mattle, Harald Weinfurter, Paul G. Kwiat and Anton Zeilinger using entangled photon pairs. Superdense coding can be thought of as the opposite of quantum teleportation, in which one transfers one qubit from Alice to Bob by communicating two classical bits, as long as Alice and Bob have a pre-shared Bell pair.

The Steane code is a tool in quantum error correction introduced by Andrew Steane in 1996. It is a CSS code (Calderbank-Shor-Steane), using the classical binary [7,4,3] Hamming code to correct for qubit flip errors and the dual of the Hamming code, the [7,3,4] code, to correct for phase flip errors. The Steane code encodes one logical qubit in 7 physical qubits and is able to correct arbitrary single qubit errors.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way or measurement-based quantum computer (MBQC) is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

In quantum computing, the quantum phase estimation algorithm is a quantum algorithm to estimate the phase corresponding to an eigenvalue of a given unitary operator. Because the eigenvalues of a unitary operator always have unit modulus, they are characterized by their phase, and therefore the algorithm can be equivalently described as retrieving either the phase or the eigenvalue itself. The algorithm was initially introduced by Alexei Kitaev in 1995.

In quantum computation, the Hadamard test is a method used to create a random variable whose expected value is the expected real part , where is a quantum state and is a unitary gate acting on the space of . The Hadamard test produces a random variable whose image is in and whose expected value is exactly . It is possible to modify the circuit to produce a random variable whose expected value is by applying an gate after the first Hadamard gate.

Optical cluster states are a proposed tool to achieve quantum computational universality in linear optical quantum computing (LOQC). As direct entangling operations with photons often require nonlinear effects, probabilistic generation of entangled resource states has been proposed as an alternative path to the direct approach.

<span class="mw-page-title-main">Swap test</span> Technique for comparing quantum states

The swap test is a procedure in quantum computation that is used to check how much two quantum states differ, appearing first in the work of Barenco et al. and later rediscovered by Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. It appears commonly in quantum machine learning, and is a circuit used for proofs-of-concept in implementations of quantum computers.

In quantum information theory and operator theory, the Choi–Jamiołkowski isomorphism refers to the correspondence between quantum channels and quantum states, this is introduced by Man-Duen Choi and Andrzej Jamiołkowski. It is also called channel-state duality by some authors in the quantum information area, but mathematically, this is a more general correspondence between positive operators and the complete positive superoperators.

The five-qubit error correcting code is the smallest quantum error correcting code that can protect a logical qubit from any arbitrary single qubit error. In this code, 5 physical qubits are used to encode the logical qubit. With and being Pauli matrices and the Identity matrix, this code's generators are . Its logical operators are and . Once the logical qubit is encoded, errors on the physical qubits can be detected via stabilizer measurements. A lookup table that maps the results of the stabilizer measurements to the types and locations of the errors gives the control system of the quantum computer enough information to correct errors.

References

  1. 1 2 3 4 Steane, Andrew M. (2006). A tutorial on quantum error correction. Quantum Computers, Algorithms and Chaos, 1-32. https://www2.physics.ox.ac.uk/sites/default/files/ErrorCorrectionSteane06.pdf
  2. Thekkadath, Guillaume (2017). Joint Measurements of Complementary Properties of Quantum Systems (Thesis thesis). Université d'Ottawa / University of Ottawa. doi:10.20381/ruor-20949.
  3. 1 2 Nielsen, Michael A. (2010). Quantum computation and quantum information. Isaac L. Chuang (10th anniversary ed.). Cambridge: Cambridge University Press. ISBN   978-1-107-00217-3. OCLC   665137861.
  4. Üstün, Gözde; Morello, Andrea; Devitt, Simon (2023), Single-Step Parity Check Gate Set for Quantum Error Correction, arXiv: 2306.08849
  5. 1 2 Devitt, Simon J.; Nemoto, Kae; Munro, William J. (2013). "Quantum error correction for beginners". Reports on Progress in Physics. 76 (7): 076001. arXiv: 0905.2794 . Bibcode:2013RPPh...76g6001D. doi:10.1088/0034-4885/76/7/076001. PMID   23787909. S2CID   206021660.
  6. Royer, Baptiste; Puri, Shruti; Blais, Alexandre (2018-11-02). "Qubit parity measurement by parametric driving in circuit QED". Science Advances. 4 (11): eaau1695. arXiv: 1802.10112 . Bibcode:2018SciA....4.1695R. doi: 10.1126/sciadv.aau1695 . ISSN   2375-2548. PMC   6269160 . PMID   30515454.
  7. McEwen, M.; Kafri, D.; Chen, Z.; Atalaya, J.; Satzinger, K. J.; Quintana, C.; Klimov, P. V.; Sank, D.; Gidney, C.; Fowler, A. G.; Arute, F.; Arya, K.; Buckley, B.; Burkett, B.; Bushnell, N. (2021-03-19). "Removing leakage-induced correlated errors in superconducting quantum error correction". Nature Communications. 12 (1): 1761. arXiv: 2102.06131 . Bibcode:2021NatCo..12.1761M. doi:10.1038/s41467-021-21982-y. ISSN   2041-1723. PMC   7979694 . PMID   33741936.
  8. Bultink, C. C.; O'Brien, T. E.; Vollmer, R.; Muthusubramanian, N.; Beekman, M. W.; Rol, M. A.; Fu, X.; Tarasinski, B.; Ostroukh, V.; Varbanov, B.; Bruno, A.; DiCarlo, L. (2020-03-20). "Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements". Science Advances. 6 (12): eaay3050. arXiv: 1905.12731 . Bibcode:2020SciA....6.3050B. doi: 10.1126/sciadv.aay3050 . ISSN   2375-2548. PMC   7083610 . PMID   32219159.