The SCMaglev (superconducting maglev, formerly called the MLU) is a magnetic levitation (maglev) railway system developed by Central Japan Railway Company (JR Central) and the Railway Technical Research Institute. [1] [2] [3]
The SCMaglev uses an electrodynamic suspension (EDS) system for levitation, guidance, and propulsion.
In development since the 1960s, the SCMaglev system will be used in the Chūō Shinkansen rail line between Tokyo and Nagoya, Japan. The line, currently under construction, is scheduled to open in 2027. JR Central is also seeking to sell or license the technology to foreign rail companies. The L0 Series, a prototype vehicle based on SCMaglev technology, holds the record for fastest crewed rail vehicle with a record speed of 603 km/h (375 mph). [4]
The SCMaglev system uses an electrodynamic suspension (EDS) system. The train's bogies have superconducting magnets installed, and the guideways contain two sets of metal coils. The current levitation system uses a series of coils wound into a "figure 8" along both walls of the guideway. These coils are cross-connected underneath the track. [3]
As the train accelerates, the magnetic fields of its superconducting magnets induce a current into these coils due to the magnetic field induction effect. If the train were centered with the coils, the electrical potential would be balanced and no currents would be induced. However, as the train runs on rubber wheels at relatively low speeds, the magnetic fields are positioned below the center of the coils, causing the electrical potential to no longer be balanced. This creates a reactive magnetic field opposing the superconducting magnet's pole (in accordance with Lenz's law), and a pole above that attracts it. Once the train reaches 150 km/h (93 mph), there is sufficient current flowing to lift the train 100 mm (4 in) above the guideway. [3]
These coils also generate guiding and stabilizing forces. Because they are cross-connected underneath the guideway, if the train moves off-center, currents are induced into the connections that correct its positioning. [3] SCMaglev also uses a linear synchronous motor (LSM) propulsion system, which powers a second set of coils in the guideway.
Japanese National Railways (JNR) began research on a linear propulsion railway system in 1962 with the goal of developing a train that could travel between Tokyo and Osaka in one hour. [5] Shortly after Brookhaven National Laboratory patented superconducting magnetic levitation technology in the United States in 1969, JNR announced development of its own superconducting maglev (SCMaglev) system. The railway made its first successful SCMaglev run on a short track at its Railway Technical Research Institute in 1972. [6] JR Central plans on exporting the technology, pitching it to potential buyers. [7]
In 1977, SCMaglev testing moved to a new 7 km test track in Hyūga, Miyazaki. By 1980, the track was modified from a "┴" shape to the "U" shape used today. In April 1987, JNR was privatized, and Central Japan Railway Company (JR Central) took over SCMaglev development.
In 1989, JR Central decided to build a better testing facility with tunnels, steeper gradients, and curves. [6] After the company moved maglev tests to the new facility, the company's Railway Technical Research Institute began to allow testing of ground effect trains, an alternate technology based on aerodynamic interaction between the train and the ground, at the Miyazaki Test Track in 1999.[ citation needed ]
Construction of the Yamanashi maglev test line began in 1990. The 18.4 km (11.4 mi) "priority section" of the line in Tsuru, Yamanashi, opened in 1997. MLX01 trains were tested there from 1997 to fall 2011, when the facility was closed to extend the line to 42.8 km (26.6 mi) and to upgrade it to commercial specifications. [8]
In 2009, Japan's Ministry of Land, Infrastructure, Transport and Tourism decided that the SCMaglev system was ready for commercial operation. In 2011, the ministry gave JR Central permission to operate the SCMaglev system on their planned Chūō Shinkansen linking Tokyo and Nagoya by 2027, and to Osaka by 2037. Construction is currently underway.
Since 2010, JR Central has promoted the SCMaglev system in international markets, particularly the Northeast Corridor of the United States, as the Northeast Maglev. [1] In 2013, Prime Minister Shinzō Abe met with U.S. President Barack Obama and offered to provide the first portion of the SC Maglev track free, a distance of about 40 miles (64 km). [9] In 2016, the Federal Railroad Administration awarded $27.8 million to the Maryland Department of Transportation to prepare preliminary engineering and NEPA analysis for an SCMaglev train between Baltimore, Maryland, and Washington, D.C. [10]
In late 2015, JR Central, Mitsui, and General Electric in Australia formed a joint venture named Consolidated Land and Rail Australia to provide a commercial funding model using private investors that could build the SC Maglev (linking Sydney, Canberra, and Melbourne), create eight new self-sustaining inland cities linked to the high-speed connection, and contribute to the community. [11] [12]
No. | Type | Note | Built |
---|---|---|---|
MLX01-1 | Kōfu-end car with double-cusp head | Displayed at the SCMaglev and Railway Park | 1995 |
MLX01-11 | Standard intermediate car | ||
MLX01-2 | Tokyo-end car with aero-wedge head | ||
MLX01-3 | Kōfu-end car with aero-wedge head | Displayed at the Railway Technical Research Institute | 1997 |
MLX01-21 | Long intermediate car | ||
MLX01-12 | Standard intermediate car | ||
MLX01-4 | Tokyo-end car with double-cusp head | ||
MLX01-901A | Kōfu-end car with long head | Remodeled and renamed from MLX01-901 in 2009 | 2002 |
MLX01-22A | Long intermediate car | Remodeled and renamed from MLX01-22 in 2009 |
Speed [km/h (mph)] | Train | Type | Location | Date | Comments |
---|---|---|---|---|---|
60 (37) | ML100 | Maglev | RTRI of JNR | 1972 | |
400.8 (249.0) | MLU001 | Maglev | Miyazaki Maglev Test Track | February 1987 | Two-car train set. Former world speed record for maglev trains. |
394.3 (245.0) | MLU002 | Maglev | Miyazaki Maglev Test Track | November 1989 | Single-car |
411 (255) | MLU002N | Maglev | Miyazaki Maglev Test Track | February 1995 | Single-car |
531 (330) | MLX01 | Maglev | Yamanashi Maglev Test Line, Japan | 12 December 1997 | Three-car train set. Former world speed record for maglev trains. |
552 (343) | MLX01 | Maglev | Yamanashi Maglev Test Line | 14 April 1999 | Five-car train set. Former world speed record for maglev trains. |
581 (361) | MLX01 | Maglev | Yamanashi Maglev Test Line | 2 December 2003 | Three-car train set. Former world speed record for all trains. |
590 (367) | L0 series | Maglev | Yamanashi Maglev Test Line | 16 April 2015 | Seven-car train set. [13] Former world speed record for all trains. |
603 (375) | L0 series | Maglev | Yamanashi Maglev Test Line | 21 April 2015 | Seven-car train set. Current world speed record for all trains. [4] |
Speed [km/h (mph)] | Train | Type | Location | Date | Comments |
---|---|---|---|---|---|
504 (313.2) | ML-500 | Maglev | Miyazaki Maglev Test Track | 12 December 1979 | |
517 (321.2) | ML-500 | Maglev | Miyazaki Maglev Test Track | 21 December 1979 | |
352.4 (219.0) | MLU001 | Maglev | Miyazaki Maglev Test Track | January 1986 | Three-car train set |
405.3 (251.8) | MLU001 | Maglev | Miyazaki Maglev Test Track | January 1987 | Two-car train set |
431 (267.8) | MLU002N | Maglev | Miyazaki Maglev Test Track | February 1994 | Single-car |
550 (341.8) | MLX01 | Maglev | Yamanashi Maglev Test Line | 24 December 1997 | Three-car train set |
548 (340.5) | MLX01 | Maglev | Yamanashi Maglev Test Line | 18 March 1999 | Five-car train set |
Speed [km/h (mph)] | Train | Type | Location | Date | Comments |
---|---|---|---|---|---|
966 (600) | MLX01 | Maglev | Yamanashi Maglev Test Line | December 1998 | Former world relative passing speed record |
1,003 (623) | MLX01 | Maglev | Yamanashi Maglev Test Line | November 1999 | Former world relative passing speed record |
1,026 (638) | MLX01 | Maglev | Yamanashi Maglev Test Line | 16 November 2004 | Current world relative passing speed record |
A linear motor is an electric motor that has had its stator and rotor "unrolled", thus, instead of producing a torque (rotation), it produces a linear force along its length. However, linear motors are not necessarily straight. Characteristically, a linear motor's active section has ends, whereas more conventional motors are arranged as a continuous loop.
The Shinkansen, colloquially known in English as the bullet train, is a network of high-speed railway lines in Japan. It was initially built to connect distant Japanese regions with Tokyo, the capital, to aid economic growth and development. Beyond long-distance travel, some sections around the largest metropolitan areas are used as a commuter rail network. It is owned by the Japan Railway Construction, Transport and Technology Agency and operated by five Japan Railways Group companies.
Transrapid is a German-developed high-speed monorail train using magnetic levitation. Planning for the system started in the late 1960s, with a test facility in Emsland, Germany inaugurated in 1983. In 1991, technical readiness for application was approved by the Deutsche Bundesbahn in cooperation with renowned universities.
The Central Japan Railway Company is the main railway company operating in the Chūbu (Nagoya) region of central Japan. It is officially abbreviated in English as JR Central and occasionally as JR Tokai. The term Tōkai refers to the southern portion of Central Japan, the geographical region in which the company chiefly operates.
The Tōkaidō Shinkansen is a Japanese high-speed rail line that is part of the nationwide Shinkansen network. Along with the San'yō Shinkansen, it forms a continuous high-speed railway through the Taiheiyō Belt, also known as the Tokaido corridor. Opening in 1964, running between Tokyo and Shin-Ōsaka, it was the world's first high-speed rail line, and it remains one of the world's busiest. Since 1987, it has been operated by the Central Japan Railway Company, prior to that by Japanese National Railways (JNR).
Electrodynamic suspension (EDS) is a form of magnetic levitation in which there are conductors which are exposed to time-varying magnetic fields. This induces eddy currents in the conductors that creates a repulsive magnetic field which holds the two objects apart.
The Chuo Shinkansen is a Japanese maglev line under construction between Tokyo and Nagoya, with plans for extension to Osaka. Its initial section is between Shinagawa Station in Tokyo and Nagoya Station in Nagoya, with stations in Sagamihara, Kōfu, Iida and Nakatsugawa. Following the completion of the Tokyo–Nagoya line, the line will extend to stations in Mie, Nara and Osaka. The line is expected to connect Tokyo and Nagoya in 40 minutes, and eventually Tokyo and Osaka in 67 minutes, running at a maximum speed of 505 km/h (314 mph). About 90% of the 286-kilometer (178 mi) line to Nagoya will be tunnels.
Electromagnetic propulsion (EMP) is the principle of accelerating an object by the utilization of a flowing electrical current and magnetic fields. The electrical current is used to either create an opposing magnetic field, or to charge a field, which can then be repelled. When a current flows through a conductor in a magnetic field, an electromagnetic force known as a Lorentz force, pushes the conductor in a direction perpendicular to the conductor and the magnetic field. This repulsing force is what causes propulsion in a system designed to take advantage of the phenomenon. The term electromagnetic propulsion (EMP) can be described by its individual components: electromagnetic – using electricity to create a magnetic field, and propulsion – the process of propelling something. When a fluid is employed as the moving conductor, the propulsion may be termed magnetohydrodynamic drive. One key difference between EMP and propulsion achieved by electric motors is that the electrical energy used for EMP is not used to produce rotational energy for motion; though both use magnetic fields and a flowing electrical current.
Inductrack is a passive, fail-safe electrodynamic magnetic levitation system, using only unpowered loops of wire in the track and permanent magnets on the vehicle to achieve magnetic levitation. The track can be in one of two configurations, a "ladder track" and a "laminated track". The ladder track is made of unpowered Litz wire cables, and the laminated track is made out of stacked copper or aluminium sheets.
Maglev is a system of rail transport whose rolling stock is levitated by electromagnets rather than rolled on wheels, eliminating rolling resistance.
The Shanghai maglev train (SMT) or Shanghai Transrapid is a magnetic levitation train (maglev) line that operates in Shanghai, China. The line uses the German Transrapid technology. The Shanghai maglev is the world's first commercial high-speed maglev and has a maximum cruising speed of 300 km/h (186 mph). Prior to May 2021 the cruising speed was 431 km/h (268 mph), at the time this made it the fastest train service in commercial operation.
Electromagnetic suspension (EMS) is the magnetic levitation of an object achieved by constantly altering the strength of a magnetic field produced by electromagnets using a feedback loop. In most cases the levitation effect is mostly due to permanent magnets as they have no power dissipation, with electromagnets only used to stabilise the effect.
Niobium–titanium (Nb-Ti) is an alloy of niobium and titanium, used industrially as a type II superconductor wire for superconducting magnets, normally as Nb-Ti fibres in an aluminium or copper matrix.
The Baltimore–Washington Superconducting Maglev Project (SCMAGLEV) is a proposed project connecting the United States cities of Baltimore, Maryland, and Washington, D.C., with a 40 miles (64 km) maglev train system between their respective central business districts. It is the first segment of the planned Washington-New York Northeast Maglev project. The maglev proposal is not related to the Baltimore–Washington hyperloop proposed by the Boring Company.
Railway Technical Research Institute, or RTRI, is the technical research company under the Japan Railways group of companies.
The SCMaglev and Railway Park is a railway museum owned by the Central Japan Railway Company in Nagoya, Japan. The museum opened on 14 March 2011.
The L0 Series is a high-speed maglev train which the Central Japan Railway Company has been developing and testing. JR Central plans to use the L0 series on the Chūō Shinkansen railway line between Tokyo and Osaka, which is under construction.
Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.
Northeast Maglev is a private U.S. company proposing a maglev train system in the Northeastern United States. The company aims to use the SCMaglev superconducting maglev system developed by the Central Japan Railway Company to provide 15-minute service between Baltimore and Washington, D.C., with an intermediate stop at BWI Airport, and ultimately connect major Northeast metropolitan hubs and airports with a goal of one-hour service from Washington, D.C., to New York City.