JetTrain

Last updated
Bombardier's experimental JetTrain locomotive toured North America in an early-2000s attempt to raise the technology's public profile. Bombardier JetTrain.jpg
Bombardier’s experimental JetTrain locomotive toured North America in an early-2000s attempt to raise the technology's public profile.

The JetTrain was an experimental high-speed passenger train concept created by Bombardier Transportation in an attempt to make European-style high-speed service more financially appealing to passenger railways throughout North America. It was designed to use the same LRC-derived tilting carriages as the Acela Express trains that Bombardier built for Amtrak in the 1990s, which used all-electric locomotives. Unlike the Acela, which is powered electrically by overhead lines, the JetTrain would have used a combination of a 4,000-horsepower (3.0 MW) gas-turbine engine, a low-power diesel engine, a reduction gearbox, and two alternators to power electric traction motors. This would have allowed it to run at high speeds on non-electrified lines.

Contents

Description

Gas turbine engines

Turbine engines use as much as 65% of their overall generated power to run the compressor at the front of the engine. This means that when the engine is set to idle, with no net energy output, the engine is still burning 65% of the fuel it would at full speed. [1] This makes turbine engines attractive only in roles where they are run at high power settings for long periods of time, as is the case in aircraft, power generation, or long-range train service. They are generally unattractive in roles where low-power operation is common, which is why they have also been unsuccessful in automobiles.

When jet fuel was very inexpensive in the 1950s and 1960s the mechanical advantages of the engine  its inherent simplicity and very light weight  made up for the increased fuel costs. Several turbine-powered low-speed train designs were introduced during the 1950s and 1960s, including both passenger and cargo engines. A number of high-speed passenger trainsets were also being designed in the 1960s, including the UAC TurboTrain in North America, the British Advanced Passenger Train (APT) and the French TGV 001.

By the 1970s, especially after the 1973 oil crisis, these advantages were no longer enough to overcome the increased fuel costs, and most turbine-based train designs disappeared. While two large classes of gas-turbine powered intercity railcars (ETG and RTG) continued to be used in France up until about 2000, both the TGV and APT switched to all-electric operation, with the installation of overhead lines to support them. In North America, where funding to upgrade rail lines was limited, electric operation was only an option for the busiest routes, and remains rare. Canadian National Railway (CN) and Via Rail continued to run their TurboTrains into the early 1980s, before they too were replaced with diesel-electric units, such as the LRC train. Amtrak continued to run Rohr Turboliners until about 2003.

JetTrain

Another change that has taken place over the last few decades is the widespread use and standardization of head end power (HEP) to provide electricity to the rest of the train for running the environmental controls and entertainment systems. Since these power requirements are fairly steady, even while the train is parked, it is not uncommon to use a separate engine just for this role, highly tuned to these operational needs.

The JetTrain concept expands on this idea by using the same HEP engine to provide motive power during low-speed operation, bypassing the problems with turbine fuel efficiency at low power settings. The JetTrain concept uses only this engine while it is moving about the station area and switchyards. Once the train has left the switchyard, the turbine engine, a 3,750 kW (5,029 shp) Pratt & Whitney Canada PW150 (called the ST40 in this role), [2] is started and the train accelerates to operational speed. The turbine engine is adapted from helicopter service, having the benefit of over 50 years of development in that service to improve its operational efficiency and reliability. It is adapted to operate on regular locomotive diesel fuel so that no special fueling facilities need to be built to introduce the turbine locomotives on existing railroad lines. The diesel engine alone can run the train at speeds up to 50 km/h (31 mph) when empty, and the turbine increases that to 240 km/h (149 mph). The two engines are geared together in a single gearbox which powers a generator to provide power to four traction motors, identical to those in the all-electric Acela Express . The generator is the motor from a TGV train, run in reverse of normal operation where instead of being hooked to electric power and producing rotation, it is rotated and produces electric power.

The major advantage to using the turbine for the high-speed portion is its small physical size and light weight. The turbine engine is about the size of a common office desk and weighs only 400 kg (882 lb), while a conventional diesel motor of the same power is about 5 m (16 ft) long and weighs as much as 10,000 kg (22,046 lb). Using the turbine lowers the weight of the power cars; the JetTrain power car is 215,000 pounds (97.5 t) and had an unsprung weight per axle of 5,530 pounds (2,508 kg). This compares to the widely used EMD F40PH which weighs 260,000 lb (117.9 t) with an axle weight of 8,540 lb (3.9 t). This reduction in mass per axle places considerably less stress on the rails, allowing the train to operate at higher speeds without changes to the railbed. [3]

With a single power car towing seven passenger cars, the JetTrain could reach 170 km/h (106 mph), although its maximum "balance speed" was 220 km/h (137 mph). With two power cars, one at the front and one at the rear, the train could reach 240 km/h (149 mph), with a maximum speed of 265 km/h (165 mph). [4] A complete train would normally consist of two power cars, one at either end, along with up to 11 passenger cars. The tilting passenger cars are versions of the ones used on the Acela, tracing their lineage to Bombardier's LRC tilting train introduced in the 1980s. In high speed passenger service, the JetTrain would be highly efficient. Due to its lighter weight and modern engine, the JetTrain has greenhouse gas emissions that are 30% lower than a diesel unit operating at the same speeds. [5] The engine is practically silent even at full power: in operation the train is the same volume as the all-electric Acela. [6]

History

Controls of the JetTrain BombardierJetTrainControls.jpg
Controls of the JetTrain

The JetTrain originated in 1997 in the Federal Railroad Administration's (FRA) Next Generation High Speed Rail Program (https://ieeexplore.ieee.org/document/395175) to develop high speed train technologies for services on routes outside the Northeast Corridor—where route volumes might not be great enough to make electrification an option. The FRA sought an industrial partner who would be willing to invest on a 50/50 basis, and FRA spokesman Warren Flatau commented, "Bombardier is the company that stepped up to the plate when we put out the word we were interested in doing this project. We believe that the project holds great potential for bringing about the high speed services that people across the country are expressing a desire for". The final agreement was signed in October 1998, with the FRA and Bombardier each investing $13 million in the first prototype locomotive, which was built at the new Bombardier Mass Transit Corporation plant in Plattsburgh, New York.

The prototype locomotive was completed in June 2000. It included the turbine propulsion system but did not implement the low-speed diesel motor approach. Safety testing started at the Transportation Technology Center (Pueblo, Colorado) in the summer of 2001, where it reached a maximum speed of 156 miles per hour (251 km/h). The prototype was then taken on a tour of potential high speed sites. Their primary target was the Florida Overland Express for passenger service between Orlando and Tampa in the United States. In support of this program, the prototype visited Miami on 7 October 2003 and Orlando on the 11 October. The Florida system was originally slated to open in 2009, but was denied funding by a referendum in 2004, after the start of detail engineering stages. [7]

In Canada, Bombardier and Via Rail presented a proposal to use JetTrains on Via’s busy Quebec City-Windsor Corridor as part of their ViaFast proposal, but were unable to obtain funding from the national government. In January 2008, the premiers of Ontario and Quebec announced a feasibility study for the Corridor, giving high speed trains another chance. The Van Horne Institute also completed a study with Bombardier regarding the suitability of JetTrain service between the two largest cities in Alberta, Edmonton and Calgary. [8] Other possibilities included new lines in Texas and to Las Vegas.

In the United Kingdom, the JetTrain has been proposed as a replacement for the 125 miles per hour (201 km/h) diesel-electric HST. [9] Australian rail magazines have suggested the JetTrain as a viable option for high-speed rail in Australia to supplement the XPT (a version of the British HST) and Tilt Train.

Bombardier had conversations with the state government of Yucatan, Mexico, for the development of the Transpeninsular Fast Train, a project that aims to connect the state capital of Mérida to the tourist resorts of the Mayan Riviera like Cancun and the Mayan Ruins of Chichen Itza. According to the Governor Ivonne Ortega, the train must run on diesel at an average speed of 100 miles per hour (160 km/h), for which Bombardier deemed suitable the use of The JetTrain. [10]

In the end, nothing ever came of any of these proposals, and the JetTrain essentially disappeared. All content related to the JetTrain were eventually removed from Bombardier's web sites and promotional materials. As of 2019, the demonstration turbine locomotive was stored at the Transportation Technology Center.

See also

Related Research Articles

<span class="mw-page-title-main">Locomotive</span> Self-propelled railway vehicle

A locomotive or engine is a rail transport vehicle that provides the motive power for a train. If a locomotive is capable of carrying a payload, it is usually rather referred to as a multiple unit, motor coach, railcar or power car; the use of these self-propelled vehicles is increasingly common for passenger trains, but rare for freight trains.

<span class="mw-page-title-main">High-speed rail</span> Fastest rail-based transport systems

High-speed rail (HSR) is a type of rail transport network utilizing trains that run significantly faster than those of traditional rail, using an integrated system of specialized rolling stock and dedicated tracks. While there is no single standard that applies worldwide, lines built to handle speeds above 250 km/h (155 mph) or upgraded lines in excess of 200 km/h (125 mph) are widely considered to be high-speed.

<span class="mw-page-title-main">TGV</span> State-owned intercity high-speed rail service of France

The TGV is France's intercity high-speed rail service, operated mainly by SNCF. SNCF worked on a high-speed rail network from 1966 to 1974 and presented the project to President Georges Pompidou who approved it. Originally designed as turbotrains to be powered by gas turbines, TGV prototypes evolved into electric trains with the 1973 oil crisis. In 1976 the SNCF ordered 87 high-speed trains from Alstom. Following the inaugural service between Paris and Lyon in 1981 on the LGV Sud-Est, the network, centered on Paris, has expanded to connect major cities across France and in neighbouring countries on a combination of high-speed and conventional lines. The TGV network in France carries about 110 million passengers a year.

<span class="mw-page-title-main">Tilting train</span> Type of train that can tilt in curves

A tilting train is a train that has a mechanism enabling increased speed on regular rail tracks. As a train rounds a curve at speed, objects inside the train experience centrifugal force. This can cause packages to slide about or seated passengers to feel squashed by the outboard armrest, and standing passengers to lose their balance, or in such excessive speeds, could even cause the train to derail. Tilting trains are designed to counteract this by tilting the carriages towards the inside of the curve, thus compensating for the g-force. The train may be constructed such that inertial forces cause the tilting, or it may have a computer-controlled powered mechanism.

<i>Acela</i> Intercity rail service operated by Amtrak in the northeastern United States

The Acela is Amtrak's flagship passenger train service along the Northeast Corridor (NEC) in the Northeastern United States between Washington, D.C., and Boston via 13 intermediate stops, including Baltimore, New York City and Philadelphia. Acela trains are the fastest in the Americas, reaching 150 miles per hour (240 km/h), but only over 49.9 miles (80.3 km) of the 457-mile (735 km) route.

<span class="mw-page-title-main">Advanced Passenger Train</span> Experimental tilting high speed train developed by British Rail

The Advanced Passenger Train (APT) was a tilting high speed train developed by British Rail during the 1970s and early 1980s, for use on the West Coast Main Line (WCML). The WCML contained many curves, and the APT pioneered the concept of active tilting to address these, a feature that has since been copied on designs around the world. The experimental APT-E achieved a new British railway speed record on 10 August 1975 when it reached 152.3 miles per hour (245.1 km/h), only to be surpassed by the service prototype APT-P at 162.2 miles per hour (261.0 km/h) in December 1979.

<span class="mw-page-title-main">Streamliner</span> Vehicle incorporating streamlining in a shape providing reduced air resistance

A streamliner is a vehicle incorporating streamlining in a shape providing reduced air resistance. The term is applied to high-speed railway trainsets of the 1930s to 1950s, and to their successor "bullet trains". Less commonly, the term is applied to fully faired upright and recumbent bicycles. As part of the Streamline Moderne trend, the term was applied to passenger cars, trucks, and other types of light-, medium-, or heavy-duty vehicles, but now vehicle streamlining is so prevalent that it is not an outstanding characteristic. In land speed racing, it is a term applied to the long, slender, custom built, high-speed vehicles with enclosed wheels.

<span class="mw-page-title-main">GE Genesis</span> Series of locomotives

The GE Genesis is a series of passenger diesel locomotives built by GE Transportation for Amtrak, Metro-North, and Via Rail between 1992 and 2001. A total of 321 units were produced.

<span class="mw-page-title-main">Bombardier–Alstom HHP-8</span> French-Canadian electric locomotive for American passenger uses

The Bombardier–Alstom HHP-8 is a type of twin-cab electric locomotive manufactured by a consortium of Bombardier Transportation and Alstom for Amtrak and MARC. The locomotive's electrical drive technology is directly derived from the SNCF BB 36000 manufactured by Alstom.

<span class="mw-page-title-main">LRC (train)</span> Class of Canadian passenger rolling stock

The LRC is a series of lightweight diesel-powered passenger trains that were used on short- to medium-distance inter-city service in the Canadian Provinces of Ontario and Quebec.

<span class="mw-page-title-main">Turbotrain</span> French high-speed, gas turbine trains

The Turbotrain was any of several French high-speed, gas turbine trains. The earliest Turbotrain entered service in 1967, for use on France's SNCF intercity lines. There were four versions in total, with the last exiting service in 2005, and it is the Turbotrain that made advances possible for the TGV.

<span class="mw-page-title-main">Gas turbine locomotive</span> Type of railway locomotive

A gas turbine locomotive is a type of railway locomotive in which the prime mover is a gas turbine. Several types of gas turbine locomotive have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels (drivers). A gas turbine train typically consists of two power cars, and one or more intermediate passenger cars.

<span class="mw-page-title-main">Power car</span> Type of rail vehicle

In rail transport, the expression power car may refer to either of two distinct types of rail vehicle:

<span class="mw-page-title-main">TGV 001</span>

The TGV 001 was an experimental gas turbine-powered TGV prototype built by Alstom in France. Comissioned in 1969, began testing in 1972 and reached speeds between 250–300 kilometres per hour (160–190 mph). It was part of a vast research program on high rail speeds which covered all technical aspects, principally traction, the behaviour of the vehicles, braking, aerodynamics and signalling. Originally, two trains were to be built, but only one was produced. The second was to be a tilting train equipped with an active tilting system, but was abandoned owing to technical difficulties.

The TGV is France's high-speed rail service. The idea of a high-speed train in France was born about twenty years before the first TGVs entered service. At that time, about 1960, a radical new concept was thought up; combining very high speeds and steep grades would allow a railway to follow the contours of existing terrain, like a gentle roller coaster. Instead of one or two percent grades which would be considered steep in normal applications, grades up to four percent would be feasible, thus allowing more flexible routing of new lines. Over the next several years, this very general idea gave rise to a variety of high speed transportation concepts, which tended to move away from conventional "wheel on rail" vehicles. Indeed, the French government at the time favoured more "modern" air-cushioned or maglev trains, such as Bertin's Aérotrain; Steel wheel on rail was considered a dead-end technology. Simultaneously, SNCF was trying to raise the speeds of conventional trains into the range 180 to 200 km/h for non-electrified sections, by using gas turbines for propulsion. Energy was reasonably cheap in those years, and gas turbines were a compact and efficient way to fulfil requirements for more power. Following on the TGS prototype in 1967, SNCF introduced gas turbine propulsion with the ETG turbotrains in Paris - Cherbourg service, in March 1970.

<span class="mw-page-title-main">UAC TurboTrain</span> Early high-speed, gas turbine train

The UAC TurboTrain was an early high-speed, gas turbine train manufactured by United Aircraft that operated in Canada between 1968 and 1982 and in the United States between 1968 and 1976. It was one of the first gas turbine-powered trains to enter service for passenger traffic, and was also one of the first tilting trains to enter service in North America.

<span class="mw-page-title-main">Turboliner</span> Family of gas turbine trainsets built for Amtrak in the 1970s

The Turboliners were a family of gas turbine trainsets built for Amtrak in the 1970s. They were among the first new equipment purchased by Amtrak to update its fleet with faster, more modern trains. The first batch, known as RTG, were built by the French firm ANF and entered service on multiple routes in the Midwestern United States in 1973. The new trains led to ridership increases wherever used, but the fixed consist that made up a Turboliner train proved a detriment as demand outstripped supply. The high cost of operating the trains led to their withdrawal from the Midwest in 1981.

<span class="mw-page-title-main">Turbojet train</span> Train powered by turbojet engines

A turbojet train is a train powered by turbojet engines. Like a jet aircraft, but unlike a gas turbine locomotive, the train is propelled by the jet thrust of the engines, rather than by its wheels. Only a handful of jet-powered trains have been built, for experimental research in high-speed rail.

<span class="mw-page-title-main">Acela Express (trainset)</span> Trainset used on the Acela, Amtraks high-speed Northeast Corridor service

The first-generation Acela Express trainset is a unique set of vehicles used on the Acela, Amtrak's flagship high-speed service along the Northeast Corridor (NEC) in the Northeastern United States. When they debuted in 2000, the sets were the fastest in the Americas, reaching 150 mph (240 km/h) on 33.9 mi (54.6 km) of the route. They were built between 1998 and 2001 by a consortium of Alstom and Bombardier. Each set has two power cars derived from units that Alstom built for the TGV, and six passenger cars derived from the LRC that Bombardier built for Via Rail.

References

  1. "21: Performance". The Jet Engine (4th ed.). Rolls-Royce plc. 1986. ISBN   978-0-902121-04-1.
  2. "Bombardier unveils new JetTrain locomotive". International Railway Journal. November 2002. Archived from the original on 2010-09-12.
  3. "JetTrain: Existing Tracks"
  4. "JetTrain: Comparison"
  5. "JetTrain: Air Quality"
  6. "JetTrain: Noise"
  7. Florida High Speed Rail Authority Archived February 24, 2012, at the Wayback Machine
  8. Van Horne Institute, "The Next Rail-Volution" Archived 2011-07-22 at the Wayback Machine Retrieved on 12 April 2009
  9. Rail Magazine, issue 550, page 33
  10. Diario de Yucatan, "Autoridades avalan el tren peninsular" Retrieved on 14 April 2011 [ dead link ]

Bibliography

Further reading