This article needs additional citations for verification .(January 2024) |
Automated track-bound traffic |
---|
Automatic train operation |
Lists of automated train systems |
Related topics |
An automated guideway transit (AGT) or automated fixed-guideway transit [1] or automatic guideway transit [2] system is a type of fixed guideway transit infrastructure with a riding or suspension track that supports and physically guides one or more driverless vehicles along its length. [3] The vehicles are often rubber tired or steel wheeled, but other traction systems including air cushion, suspended monorail and maglev have been implemented. The guideway provides both physical support, like a road, as well as the guidance. An automated line can be cheaper to run than a conventional line, due to the shorter trains and stations. [4]
AGT covers a wide variety of systems, from limited people mover systems commonly found at airports, [3] to more complex automated train systems like the Vancouver SkyTrain. In the people mover role the term "automated people mover" (APM) is sometimes used, although this distinction is relatively rare because most people movers are automated. Larger systems span a variety of conceptual designs, from subway-like advanced rapid transit (ART) systems to smaller (typically two to six passengers) vehicles known as personal rapid transit (PRT) which offer direct point-to-point travel along a switched network. [3]
AGT was originally developed as a means of providing mass transit services aimed at serving rider loads higher than those that could be served by buses or trams, but smaller than those served by conventional subways. Subways were too expensive to build in areas of lower density, such as smaller cities or the suburbs of larger ones, which often suffer the same gridlock problems as larger cities. Buses could be easily introduced in these areas, but did not offer the capacities or speeds that made them an attractive alternative to car ownership. Cars drive directly from origin to destination, while buses generally work on a hub-and-spoke model that can increase trip times.
AGT offered a solution that fit between these extremes. Much of the cost of a subway system is due to the large vehicle sizes, which demand large tunnels, large stations and considerable infrastructure throughout the system. The large vehicles are a side-effect of the need to have considerable space between the vehicles, known as "headway", for safety reasons due to the limited sightlines in tunnels. Given large headways and limited average speed due to stops, the only way to increase passenger capacity is to increase the size of the vehicle. Capital costs can be reduced by elevating the tracks instead of burying them, but the large tracks needed present a major visual barrier, and the steel-wheels-on-steel-rails are very noisy rounding bends.
Headway can be reduced via automation, a technique that was becoming feasible in the 1960s. As the headway is decreased, the size of vehicle needed to transport a given number of passengers per hour also decreases, which, in turn, decreases the infrastructure needed to support these smaller vehicles. Everything from track supports to station size can be reduced, with similar reductions in capital costs. Additionally, the lighter vehicles allow for a wider variety of suspension methods, from conventional steel wheels, to rubber tires, air cushion vehicles and maglevs. Since the system has to be automated in order to reduce the headways enough to be worthwhile, by automating the steering as well the operational costs can also be reduced compared to crewed vehicles.
One key problem in an automated system is the steering system's negotiation of turns in the right-of-way. The simplest solution is to use a rigid guideway, like conventional rails or steel rollercoasters. For lighter AGTs, these solutions were over-specified given the size of the vehicle, so the guideway was often separate from the running surface. Typical solutions used a single light rail embedded in the ground or attached to the guideway wall, with a wheel or slider that was pressed against the guideway rail and steered the running wheels through a linkage. A suspension-like system is needed to smooth out the imperfections in the guideway and provide a comfortable ride. More modern systems can eliminate the rail and replace it with a "virtual" one that is read by sensors on the vehicle without the need for any mechanical connection.
AGT systems, and the personal rapid transit concept (or "dial-a-cab"), became a major area of research after the publication of the HUD reports in 1968, and subsequent funding by the US Department of Transportation. Political support was particularity strong in states with large concentrations of aerospace companies; with the ending of Project Apollo and the winding down of the Vietnam War, there was concern that these companies would be left with few projects in the 1970s and 80s. Expecting widespread deployment of PRT systems through the late 1970s and 80s, many of the major US aerospace companies entered the AGT market, including Boeing, LTV and Rohr. Car companies followed suit, including General Motors and Ford. This, in turn, sparked off a wave of similar developments around the world.
However, the market for these systems proved to be overestimated, and only one of these US-designed small AGT's was constructed as a mass transit system, the Morgantown PRT.
Small scaled AGT systems are also known as people movers. Although the mass transit world showed a lack of interest, AGT systems quickly found a number of niche roles that they have continued to fill to this day. Tampa International Airport was the world's first to incorporate an AGT system as an inter-terminal connector in 1971. Its landside/airside set up allows the airport to increase capacity without spreading out. The LTV Airtrans was another early AGT systems which was installed at the Dallas/Fort Worth International Airport and went into operation in January 1975 (later replaced by the DFW Skylink system in 2005). Similar systems followed at airports around the world, and today they are relatively universal at larger airports, often connecting terminals with distant long-term parking lots. Similar systems were also a fixture of a number of amusement parks, notably the Walt Disney World Monorail System and the Toronto Zoo Domain Ride. The Getty Center in Los Angeles uses a unique vertically oriented AGT to bring visitors from a parking lot off Interstate 405 to the Center at the top of a hill in Brentwood; this system places the motor outside the vehicle at the top of the guideway to reduce the weight lifted up the hill and thus improve efficiency. [5] Small AGT systems are also used as circulator or feeder systems within urban centers. The city of Miami installed its Metromover system in 1986 and later extended it by 4.4 miles and added 12 new stations it in 1994. Similar INNOVIA APM 100 systems operate in Singapore's Bukit Panjang district and in Guangzhou, China.
Over time, the aerospace firms that had initially designed most of these systems left the industry and sold off the AGT divisions to other companies. Most of these were picked up by existing transportation conglomerates, and through additional mergers and buyouts, many of these are today owned by either Siemens or Bombardier. During the same period, a number of new companies entered the field with systems designed solely for these smaller installations. Poma, Doppelmayr and the Leitner Group, better known for their ski lift systems, provide AGT systems for the airport market.
Although the smaller vehicle systems were not successful in the marketplace, larger AGT were simpler to integrate into existing mass transit systems. Many higher capacity AGT systems that looked and operated in a fashion similar to a small subway have since become a common fixture of many existing metro systems, often as a way to serve outlying areas or as feeders to a metro system. Kobe's Port Liner is the world's first mass transit AGT, which began operating in 1981. It connects Kobe's main rail station, Sannomiya Station, with the dockyard areas and Kobe Airport to the south. Many similar systems have been built elsewhere in Japan. The Véhicule Automatique Léger (VAL) system in Lille, France, opened in 1983, is often cited as the first AGT installed to serve an existing urban area. Larger scale INNOVIA advanced rapid transit (ART) systems in Toronto, and Vancouver followed in the next few years, and then the Docklands Light Railway in London. VAL and ART systems have seen continued installations around the world such as in Airport Express in Beijing and have been joined by a variety of new systems with similar features, like the AnsaldoBreda Driverless Metro. Automated monorail systems, such as the Innovia Monorail 200 system in Las Vegas, are becoming more common AGT systems. Monorails are less obtrusive because they only require a single, narrow guidebeam.
Once limited to larger airports and a small number of metro systems, AGT have undergone something of a renaissance since the late 1990s. Lower capital costs compared to conventional metros have allowed AGT systems to expand quickly, and many of these "small" systems now rival their larger counterparts in any measure. For instance, the Vancouver SkyTrain started operations in 1986, but has expanded so rapidly that its track length roughly matches the Toronto subway which pre-dates it by 30 years.
Although the original introduction of PRT systems did not result in the widespread adoption as expected, Morgantown Personal Rapid Transit in West Virginia's success, along with a renewed interest in new forms of transit, has led to several new PRT projects since 2000. London Heathrow Airport has installed a PRT system, known as ULTra, to connect Terminal 5 with the long-term carpark; its full operation began in September 2011.
Personal rapid transit (PRT), also referred to as podcars or guided/railed taxis, is a public transport mode featuring a network of specially built guideways on which ride small automated vehicles that carry few passengers per vehicle. PRT is a type of automated guideway transit (AGT), a class of system which also includes larger vehicles all the way to small subway systems. In terms of routing, it tends towards personal public transport systems.
A people mover or automated people mover (APM) is a type of small scale automated guideway transit system. The term is generally used only to describe systems serving relatively small areas such as airports, downtown districts or theme parks.
A rubber-tyred metro or rubber-tired metro is a form of rapid transit system that uses a mix of road and rail technology. The vehicles have wheels with rubber tires that run on a roll way inside guide bars for traction. Traditional, flanged steel wheels running on rail tracks provide guidance through switches and act as backup if tyres fail. Most rubber-tyred trains are purpose-built and designed for the system on which they operate. Guided buses are sometimes referred to as 'trams on tyres', and compared to rubber-tyred metros.
Véhicule Automatique Léger or VAL is a type of driverless (automated), rubber-tyred, medium-capacity rail transport system. The technology was developed at the Lille University of Science and Technology, was marketed by Matra, and first used in the early 1980s for the Lille Metro system, one of the world's first fully automated mass-transit rail networks, preceded only by the Port Island Line in Kobe, Japan. The VAL technology is now marketed by Siemens, which acquired Matra in the late 1990s.
Innovia Metro is an automated rapid transit system manufactured by Alstom. Innovia Metro systems run on conventional metal rails and pull power from a third rail but are powered by a linear induction motor that provides traction by using magnetic force to pull on a "fourth rail" placed between the running rails. However, newer versions of the technology are available with standard electric rotary propulsion.
An elevated railway or elevated train is a railway with the tracks above street level on a viaduct or other elevated structure. The railway may be broad-gauge, standard-gauge or narrow-gauge railway, light rail, monorail, or a suspension railway. Elevated railways are normally found in urban areas where there would otherwise be multiple level crossings. Usually, the tracks of elevated railways that run on steel viaducts can be seen from street level.
Urban rail transit is a wide term for various types of local rail systems providing passenger service within and around urban or suburban areas. The set of urban rail systems can be roughly subdivided into the following categories, which sometimes overlap because some systems or lines have aspects of multiple types.
Various terms are used for passenger railway lines and equipment; the usage of these terms differs substantially between areas:
Cabinentaxi, sometimes Cabintaxi in English, was a German people mover development project undertaken by Demag and Messerschmitt-Bölkow-Blohm with funding and support from the Bundesministerium für Forschung und Technologie. Cabinentaxi was designed to offer low-cost mass transit services where conventional systems, like a metro, would be too expensive to deploy due to low ridership or high capital costs.
The Innovia APM 100 is an automated people mover (APM) rolling stock first developed by Westinghouse, intended mainly for airport connections and light rail in towns. They are operated by Automatic Train Control (ATC), making it fully automatic and driverless.
The Crystal Mover is a rubber-tired automated people mover (APM) system for airport and urban rail transit applications manufactured at Mitsubishi Heavy Industries (MHI) Mihara Machinery Works in Mihara, Hiroshima Prefecture, Japan. The Crystal Mover, initially based on the Japanese APM standard, is used in automated guideway transit (AGT) systems in China, Japan, Singapore, South Korea, the United Arab Emirates and the United States.
Ultra is a personal rapid transit podcar system developed by the British engineering company Ultra Global PRT.
LTV's (Vought) Airtrans was an automated people mover system that operated at Dallas/Fort Worth International Airport between 1974 and 2005. The adaptable people mover was utilized for several separate systems: the Airport Train, Employee Train, American Airlines TrAAin and utility service. All systems utilized the same guideways and vehicle base but served different stations to create various routes.
The Alden staRRcar, short for "Self-Transport Road and Rail Car", was a personal rapid transit (PRT) system designed by William Alden in the 1960s. It originally envisioned small electrically powered cars suitable for short distance trips at low speed within urban areas, which could optionally merge onto tracks that would provide power and guidance for high-speed travel over longer inter-city distances. It was one of the earliest dual-mode vehicles to be proposed, and one of the earliest to be actually built.
ROMAG was a personal rapid transit (PRT) system produced by the American company Rohr, Inc. It featured a linear induction motor that was arranged to provide both traction and suspension in a magnetic levitation system.
The Computer-controlled Vehicle System, almost universally referred to as CVS, was a personal rapid transit (PRT) system developed by a Japanese industrial consortium during the 1970s. Like most PRT systems under design at the same time, CVS was based around a small four-person electric vehicle similar to a small minivan that could be requested on demand and drive directly to the user's destination. Unlike other PRT systems, however, CVS also offered cargo vehicles, included "dual-use" designs that could be manually driven off the PRT network, and included the ability to stop at intersections in a conventional road-like network.
Krauss-Maffei's Transurban was a 12-passenger automated guideway transit (AGT) mass transit system based on a maglev guideway. Development started in 1970 as one of the many AGT and PRT projects that followed in the wake of the HUD reports of 1968. Its selection as the basis of the GO-Urban system in Toronto in 1973 made it well known in the industry; it would have been the basis of the first large-area AGT mass transit network in the world. Technical problems cropped up during the construction of the test track, and the sudden removal of funding by the West German government led to the project's cancellation in late 1974. The Ontario government completed development and installation of a non-maglev version, today known as the Bombardier Advanced Rapid Transit.
The Dashaveyor was an automated guideway transit (AGT) system developed during the 1960s and '70s.
Minitram was an automated guideway transit system studied by the Transport and Road Research Laboratory (TRRL), part of the UK Department of the Environment's Ministry of Transport. The system was based on small, completely automated tram-like vehicles of about 25 passengers that could be connected together into three-car trains to increase capacity. Proposed designs were submitted by Hawker Siddeley Dynamics (HSD) and EASAMS. HSD's system used rubber wheels and EASAMS' steerable steel ones, but the projects were otherwise similar and notably shared a linear motor for propulsion and most braking. A series of failed sales efforts in the UK and to the GO-Urban system in Toronto, combined with decreased government spending in the 1970s, led to the concept being abandoned.
Innovia APM is a rubber-tired automated people mover system (APM) currently manufactured and marketed by Alstom as part of its Innovia series of fully automated transportation systems. The technology was introduced in 1963 by Westinghouse and has been improved over three generations: the Innovia APM 100, Innovia APM 200, and the latest model, the Innovia APM 300. The license to use the technology has also passed hands several times, from Westinghouse to AEG in 1988, to Adtranz in 1996, to Bombardier Transportation in 2001, and most recently to Alstom in 2021.