Navlab

Last updated

Navlab is a series of autonomous and semi-autonomous vehicles developed by teams from The Robotics Institute at the School of Computer Science, Carnegie Mellon University. Later models were produced under a new department created specifically for the research called "The Carnegie Mellon University Navigation Laboratory". [1] Navlab 5 notably steered itself almost all the way from Pittsburgh to San Diego.

Contents

History

Research on computer controlled vehicles began at Carnegie Mellon in 1984 [1] as part of the DARPA Strategic Computing Initiative [2] and production of the first vehicle, Navlab 1, began in 1986. [3]

Applications

The vehicles in the Navlab series have been designed for varying purposes, "... off-road scouting; automated highways; run-off-road collision prevention; and driver assistance for maneuvering in crowded city environments. Our current work involves pedestrian detection, surround sensing, and short range sensing for vehicle control." [4]

Several types of vehicles have been developed, including "... robot cars, vans, SUVs, and buses." [1]

Vehicles

The institute has made vehicles with the designations Navlab 1 through 10. [4] The vehicles were mainly semi-autonomous, though some were fully autonomous and required no human input. [4]

Navlab 1 was built in 1986 using a Chevrolet panel van. [3] The van had 5 racks of computer hardware, including 3 Sun workstations, video hardware and GPS receiver, and a Warp supercomputer. [3] The vehicle suffered from software limitations and was not fully functional until the late 80s, when it achieved its top speed of 20 mph (32 km/h). [3]

Navlab 2 was built in 1990 using a US Army HMMWV. [3] Computer power was uprated for this new vehicle with three Sparc 10 computers, "for high level data processing", and two 68000-based computers "used for low level control". [3] The Hummer was capable of driving both off- or on-road. When driving over rough terrain, its speed was limited with a top speed of 6 mph (9.7 km/h). When Navlab 2 was driven on-road it could achieve as high as 70 mph (110 km/h) [3]

Navlab 1 and 2 were semi-autonomous and used "... steering wheel and drive shaft encoders and an expensive inertial navigation system for position estimation." [3]

Navlab 5 used a 1990 Pontiac Trans Sport minivan. In July 1995, the team took it from Pittsburgh to San Diego on a proof-of-concept trip, dubbed "No Hands Across America", with the system navigating for all but 50 of the 2850 miles, averaging over 60 MPH. [5] [6] [7] In 2007, Navlab 5 was added to the Class of 2008 inductees of the Robot Hall of Fame. [8]

Navlabs 6 and 7 were both built with Pontiac Bonnevilles. Navlab 8 was built with an Oldsmobile Silhouette van. Navlabs 9 and 10 were both built out of Houston transit buses. [9]

See also

Related Research Articles

An autonomous robot is a robot that acts without recourse to human control. The first autonomous robots environment were known as Elmer and Elsie, which were constructed in the late 1940s by W. Grey Walter. They were the first robots in history that were programmed to "think" the way biological brains do and meant to have free will. Elmer and Elsie were often labeled as tortoises because of how they were shaped and the manner in which they moved. They were capable of phototaxis which is the movement that occurs in response to light stimulus.

<span class="mw-page-title-main">Platoon (automobile)</span> Group of vehicles travelling separately but following another

In transportation, platooning or flocking is a method for driving a group of vehicles together. It is meant to increase the capacity of roads via an automated highway system.

<span class="mw-page-title-main">Self-driving car</span> Vehicle operated with reduced human input

A self-driving car, also known as an autonomous car (AC), driverless car, or robotic car (robo-car), is a car that is capable of traveling without human input. Self-driving cars are responsible for perceiving the environment, monitoring important systems, and control, including navigation. Perception accepts visual and audio data from outside and inside the car and interpret the input to abstractly render the vehicle and its surroundings. The control system then takes actions to move the vehicle, considering the route, road conditions, traffic controls, and obstacles.

The DARPA Grand Challenge is a prize competition for American autonomous vehicles, funded by the Defense Advanced Research Projects Agency, the most prominent research organization of the United States Department of Defense. Congress has authorized DARPA to award cash prizes to further DARPA's mission to sponsor revolutionary, high-payoff research that bridges the gap between fundamental discoveries and military use. The initial DARPA Grand Challenge in 2004 was created to spur the development of technologies needed to create the first fully autonomous ground vehicles capable of completing a substantial off-road course within a limited time. The third event, the DARPA Urban Challenge in 2007, extended the initial Challenge to autonomous operation in a mock urban environment. The 2012 DARPA Robotics Challenge, focused on autonomous emergency-maintenance robots, and new Challenges are still being conceived. The DARPA Subterranean Challenge was tasked with building robotic teams to autonomously map, navigate, and search subterranean environments. Such teams could be useful in exploring hazardous areas and in search and rescue.

<span class="mw-page-title-main">Lane departure warning system</span> Mechanism designed to warn a driver when the vehicle begins to move out of its lane

In road-transport terminology, a lane departure warning system (LDWS) is a mechanism designed to warn the driver when the vehicle begins to move out of its lane on freeways and arterial roads. These systems are designed to minimize accidents by addressing the main causes of collisions: driver error, distractions and drowsiness. In 2009 the U.S. National Highway Traffic Safety Administration (NHTSA) began studying whether to mandate lane departure warning systems and frontal collision warning systems on automobiles.

<span class="mw-page-title-main">Unmanned ground vehicle</span> Type of vehicle

An unmanned ground vehicle (UGV) is a vehicle that operates while in contact with the ground and without an onboard human presence. UGVs can be used for many applications where it may be inconvenient, dangerous, or impossible to have a human operator present. Generally, the vehicle will have a set of sensors to observe the environment, and will either autonomously make decisions about its behavior or pass the information to a human operator at a different location who will control the vehicle through teleoperation.

<span class="mw-page-title-main">Vehicular automation</span> Automation for various purposes of vehicles

Vehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent systems to assist the operator of a vehicle such as a car, lorries, aircraft, or watercraft. A vehicle using automation for tasks such as navigation to ease but not replace human control, qualify as semi-autonomous, whereas a fully self-operated vehicle is termed autonomous.

Ernst Dieter Dickmanns is a German pioneer of dynamic computer vision and of driverless cars. Dickmanns has been a professor at Bundeswehr University Munich (1975–2001), and visiting professor to Caltech and to MIT, teaching courses on "dynamic vision".

<span class="mw-page-title-main">DEPTHX</span> Autonomous underwater vehicle for exploring sinkholes in Mexico

The Deep Phreatic Thermal Explorer (DEPTHX) is an autonomous underwater vehicle designed and built by Stone Aerospace, an aerospace engineering firm based in Austin, Texas. It was designed to autonomously explore and map underwater sinkholes in northern Mexico, as well as collect water and wall core samples. This could be achieved via an autonomous form of navigation known as A-Navigation. The DEPTHX vehicle was the first of three vehicles to be built by Stone Aerospace which were funded by NASA with the goal of developing technology that can explore the oceans of Jupiter's moon Europa to look for extraterrestrial life.

<span class="mw-page-title-main">VaMP</span>

The VaMP driverless car was one of the first truly autonomous cars along with its twin vehicle, the VITA-2. They were able to drive in heavy traffic for long distances without human intervention, using computer vision to recognize rapidly moving obstacles such as other cars, and automatically avoid and pass them.

<span class="mw-page-title-main">DARPA Grand Challenge (2005)</span> Second driverless car competition of the DARPA Grand Challenge

The second driverless car competition of the DARPA Grand Challenge was a 212 km (132 mi) off-road course that began at 6:40 am on October 8, 2005, near the California/Nevada state line. All but one of the 23 finalists in the 2005 race surpassed the 11.78 km (7.32 mi) distance completed by the best vehicle in the 2004 race. Five vehicles successfully completed the course:

<span class="mw-page-title-main">DARPA Grand Challenge (2007)</span> Third driverless car competition of the DARPA Grand Challenge

The third driverless car competition of the DARPA Grand Challenge was commonly known as the DARPA Urban Challenge. It took place on November 3, 2007 at the site of the now-closed George Air Force Base, in Victorville, California, in the West of the United States. Discovery's Science channel followed a few of the teams and covered the Urban Challenge in its RobocarsArchived 2008-07-30 at the Wayback Machine series.

<span class="mw-page-title-main">Waymo</span> Autonomous car technology company

Waymo LLC, formerly known as the Google Self-Driving Car Project, is an American autonomous driving technology company headquartered in Mountain View, California. It is a subsidiary of Alphabet Inc, the parent company of Google.

<span class="mw-page-title-main">National Robotics Engineering Center</span> Operating unit within the Robotics Institute of Carnegie Mellon University

The National Robotics Engineering Center (NREC) is an operating unit within the Robotics Institute (RI) of Carnegie Mellon University. NREC works closely with government and industry clients to apply robotic technologies to real-world processes and products, including unmanned vehicle and platform design, autonomy, sensing and image processing, machine learning, manipulation, and human–robot interaction.

<span class="mw-page-title-main">History of self-driving cars</span> Overview of the history of self-driving cars

Experiments have been conducted on self-driving cars since 1939; promising trials took place in the 1950s and work has proceeded since then. The first self-sufficient and truly autonomous cars appeared in the 1980s, with Carnegie Mellon University's Navlab and ALV projects in 1984 and Mercedes-Benz and Bundeswehr University Munich's Eureka Prometheus Project in 1987. Since then, numerous major companies and research organizations have developed working autonomous vehicles including Mercedes-Benz, General Motors, Continental Automotive Systems, Autoliv Inc., Bosch, Nissan, Toyota, Audi, Volvo, Vislab from University of Parma, Oxford University and Google. In July 2013, Vislab demonstrated BRAiVE, a vehicle that moved autonomously on a mixed traffic route open to public traffic.

<span class="mw-page-title-main">Argo AI</span> Autonomous driving technology company

Argo AI was an autonomous driving technology company headquartered in Pittsburgh, Pennsylvania. The company was co-founded in 2016 by Bryan Salesky and Peter Rander, veterans of the Google and Uber automated driving programs. Argo AI was an independent company that built software, hardware, maps, and cloud-support infrastructure to power self-driving vehicles. Argo was mostly backed by Ford Motor Co. (2017) and the Volkswagen Group (2020).

Torc Robotics (Torc), an independent subsidiary of Daimler Truck, is an American autonomous truck company headquartered in Blacksburg, Virginia, with operations in Albuquerque, New Mexico; Austin, Texas; and Stuttgart, Germany. Torc is testing autonomous trucks in Virginia, New Mexico, and Texas and is taking a pure play approach to commercialization – focusing at first on one platform in one region.

kar-go Autonomous delivery vehicle

Kar-go, is an autonomous delivery vehicle, designed and built by British company, Academy of Robotics Ltd, a UK company, registered in Wales. The vehicle uses self-drive / driverless car technology to drive itself to locations where it delivers packages autonomously.

<span class="mw-page-title-main">Chris Urmson</span> CEO of self-driving technology company Aurora

Chris Urmson is a Canadian engineer, academic, and entrepreneur known for his work on self-driving car technology. He cofounded Aurora Innovation, a company developing self-driving technology, in 2017 and serves as its CEO. Urmson was instrumental in pioneering and advancing the development of self-driving vehicles since the early 2000s.

<span class="mw-page-title-main">Yandex self-driving car</span> Robotaxi project

Yandex self-driving car is an autonomous car project of the Russian-based technology company Yandex. The first driverless prototype launched in May 2017. As of 2018, functional service was launched in Russia with prototypes also being tested in Israel and the United States. In 2019, Yandex revealed autonomous delivery robots based on the same technology stack as the company's self-driving cars. Since 2020, autonomous robots have been delivering food, groceries and parcels in Russia and the United States. In 2020, the self-driving project was spun-off into a standalone company under the name of Yandex Self-Driving Group.

References

  1. 1 2 3 "Navlab: The Carnegie Mellon University Navigation Laboratory". The Robotics Institute. Retrieved 14 July 2011.
  2. "Robotics History: Narratives and Networks Oral Histories: Chuck Thorpe". IEEE.tv. 17 April 2015. Retrieved 2018-06-07.
  3. 1 2 3 4 5 6 7 8 Todd Jochem; Dean Pomerleau; Bala Kumar & Jeremy Armstrong (1995). "PANS: A Portable Navigation Platform". The Robotics Institute. Retrieved 14 July 2011.
  4. 1 2 3 "Overview". NavLab. The Robotics Institute. Archived from the original on 8 August 2011. Retrieved 14 July 2011.
  5. "Look, Ma, No Hands". Carnegie Mellon University. 31 December 2017. Retrieved 31 December 2017.
  6. Freeman, Mike (3 April 2017). "Connected Cars: The long road to autonomous vehicles". Center for Wireless Communications. Archived from the original on 1 January 2018. Retrieved 31 December 2017.
  7. Jochem, Todd (3 April 2015). "Back to the Future: Autonomous Driving in 1995 - Robotics Trends". www.roboticstrends.com. Retrieved 31 December 2017.
  8. "THE 2008 INDUCTEES". The Robot Institute. Archived from the original on 26 September 2011. Retrieved 14 July 2011.
  9. Shirai, Yoshiaki; Hirose, Shigeo (2012). Attention and Custom for Safe Behavior. Springer Science & Business Media. p. 249. ISBN   978-1447115809.{{cite book}}: |work= ignored (help)