A medium-capacity system (MCS), also known as light rapid transit or light metro, is a rail transport system with a capacity greater than light rail, but less than typical heavy-rail rapid transit. [1] MCS trains are usually 1 to 4 cars. Most medium-capacity rail systems are automated or use light-rail type vehicles.
Since ridership determines the scale of a rapid transit system, statistical modeling allows planners to size the rail system for the needs of the area. When the predicted ridership falls between the service requirements of a light rail and heavy rail or metro system, an MCS project is indicated. An MCS may also result when a rapid transit service fails to achieve the requisite ridership due to network inadequacies (e.g. single-tracking) or changing demographics.
In contrast with light rail systems, [2] an MCS runs on a fully grade separated exclusive right-of-way. In some cases, the distance between stations is much longer than typically found on heavy rail networks. An MCS may also be suitable for branch line connections to another mode of a heavy-capacity transport system, such as an airport or a main route of a metro network.
The definition of a medium-capacity system varies due to its non-standardisation. Inconsistencies in international definitions are even reflected within individual countries. For example, the Taiwan Ministry of Transportation and Communications states that each MCS system can board around 6,000 to 20,000 passengers per hour per direction (p/h/d or PPHPD), [3] while the Taiwan Department of Rapid Transit Systems (TCG) suggests an MCS has a capability of boarding around 20,000 to 30,000 p/h/d, [4] and a report from the World Bank places the capacity of an MCS at 15,000 to 30,000 p/h/d. [5] For comparison, ridership capacity of more than 30,000 p/h/d has been quoted as the standard for metro or "heavy rail" standards rapid transit systems, [6] while light rail systems have passenger capacity volumes of around 10,000 to 12,000 p/h/d [5] or 12,000 to 18,000 p/h/d. [6] VAL (Véhicule Automatique Léger) systems are categorised in the medium-capacity rail systems because their manufacturer defines their passenger capacities as being up to 30,000 p/h/d. [7] In Hong Kong, MTR's Ma On Shan line could, in some contexts, are classified as a medium-capacity system (as it used shorter 4-car SP1950 trains, compared to 7- to 12-car trains on other heavy rail lines) but can attain up to 32,000 p/h/d which is comparable to the passenger capacity of some full metro transit networks. [8] However, it was built to the full heavy rail standard as it was designed to be extended. Full-length, 8-car trains were deployed on the line in advance of its extension and the line was extended into the Tuen Ma line in June 2021. Two other lines, the Disneyland Resort line shuttle service to Hong Kong Disneyland Resort since 2005 and the South Island line since December 2016, are also classified as MCS because of their shorter trains and smaller capacity, however they use the same technology as the full-capacity rapid transit lines.
Generally speaking, medium capacity designation is created from relative lower capacity and/or train configuration comparisons to other heavy rail systems in the same area. For example, the train in an MCS may have a shorter configuration than the standard metro system, usually three (though, in some cases, just two) to six traincars, allowing for shorter platforms to be built and used. Rather than using steel wheels, rubber-tyred metro technology, such as the VAL system used on the Taipei Metro, is sometimes recommended, due to its low running noise, as well as the ability to climb steeper grades and turn tighter curves, thus allowing more flexible alignments.
Fully heavy rail or metro systems generally have train headways of 10 minutes or better during peak hours. [9] Some systems that qualify as heavy rail/metro in every other way (e.g. are fully grade separated), but which have network inadequacies (e.g. a section of single track rail) can only achieve lesser headways (e.g. every 15 minutes) which result in lower passenger volume capacities, and thus would be more accurately defined as "light metro" or "medium-capacity" systems as a result. An example is the LA Metro B/D line during the COVID-19 pandemic, as headways were reduced to every 12-20 minutes on each line.
In addition to MCS, light metro is a common alternative word in European countries, India, [10] [11] and South Korea. [12]
In some countries, however, light metro systems are conflated with light rail. In South Korea, light rail is used as the translation for the original Korean term, "경전철" – its literal translation is "light metro", but it actually means "Any railway transit other than heavy rail, which has capacity between heavy rail and bus transit". [13] [14] [15] [16] For example, the U Line in Uijeongbu utilises VAL system, a variant of medium-capacity rail transport, and is therefore categorised "light metro" by LRTA and others, [12] though the operator itself and South Korean sources refer to the U Line as "light rail". [17] Busan–Gimhae Light Rail Transit is also akin to a light metro in its appearance and features, thought the operator refers it as a "light rail". [18] Likewise, Malaysian officials and media commonly refer to the Kelana Jaya, Ampang and Sri Petaling lines as "light rail transit" systems; [19] [20] [21] when originally opened, the original Malay abbreviations for the lines, PUTRA-LRT (Projek Usahasama Transit Ringan Automatik/Automatic Light Transit Joint Venture Project) and STAR-LRT (Sistem Transit Aliran Ringan/Light Flow Transit System) did not clearly distinguish between light rail and light rapid transit. Some articles in India also refer to some "light metro"-type systems as "light rail". [22] The Light Rail Transit Association (LRTA), a nonprofit organisation, also categorises several public transport systems as "light metro". [23] [a]
The main reason to build a light metro instead of a regular metro is to reduce costs, mainly because this system employs shorter vehicles and shorter stations.
Light metros may operate faster than heavy-rail rapid transit systems due to shorter dwell times at stations, and the faster acceleration and deceleration of lighter trains.[ citation needed ] For example, express trains on the New York City Subway are about as fast as the Vancouver SkyTrain, but these express trains skip most stops on lines where they operate.
Medium-capacity systems have restricted growth capacities as ridership increases. For example, it is difficult to extend station platforms once a system is in operation, especially for underground railway systems, since this work must be done without interfering with traffic. Some railway systems, like Hong Kong and Wuhan, may make advance provisions for longer platforms, for example, so that they will be able to accommodate trains with more, or longer cars, in the future. Taipei Metro, for example, constructed extra space for two extra cars in all its Wenhu Line stations.
The following is the list of currently-operating MCSs which are categorised as light metros by the Light Rail Transit Association (LRTA) as of March 2018 [update] , [24] unless otherwise indicated.
The list does not include, for example, monorails and urban maglev, despite most of them also being "medium-capacity rail system".
Country | Location | System | Lines | Year opened | Notes |
---|---|---|---|---|---|
Armenia | Yerevan | Yerevan Metro | 1 | 1981 | Rolling stock uses 2 and 3-car trains |
Austria | Vienna | Vienna U-Bahn – Line 6 | 1 | 1989 | Low-floor trains T and T1 built by Bombardier Transportation, 27.3 metres (90 ft) and 26.8 metres (88 ft) long respectively, are operated in 2- or 4-car configurations. |
Bulgaria | Sofia | Sofia Metro – Line 3 | 1 | 2020 | Driverless vehicle system – 60-metre-long (200 ft) trains; Siemens chosen as technology supplier [25] |
Canada | Ottawa | O-Train – Confederation Line | 1 | 2019 | While using equipment typically employed in light rail systems, the Confederation Line approaches the capacity of a full "light metro" system since it operates with a 2-car (100-metre long) Alstom Citadis Spirit trains. |
Montreal | Réseau express métropolitain | 1 | 2023 | Driverless vehicle system. [26] Categorised by itself [27] as a light metro. Trains are 38 metres long. | |
Vancouver | SkyTrain | 3 | 1985 | While using equipment typically employed in medium-capacity systems, the Expo line approaches the capacity of a full "rapid transit" system since it operates with longer 4- and 6-car Bombardier Innovia Metro trains. However, the Canada Line operates with 2-car Rotem trains. | |
China | Beijing | Beijing Subway – Yanfang line, Capital Airport Express | 2 | 2008 | Capital Airport Express uses 4-car L-type trains, 60m long. Yanfang line uses 4-car B-type trains, 76 metres (249 ft) long, with trains from both lines being driverless. |
Changchun | Changchun Rail Transit – Line 3, Line 4, Line 8 | 3 | 2002 | All three lines use light rail vehicles, with line 3 also having level crossings. | |
Dalian | Dalian Metro – Line 3, Line 12, Line 13 | 3 | 2002 | Uses 4-car B-type trains, with some trains on line 3 having 2 cars. | |
Foshan | Foshan Metro – Line 1 (Nanhai Tram) | 1 | 2021 | The line (also called Nanhai New Transit) uses light rail vehicles, 35 metres (115 ft) long. [28] | |
Guangzhou | Guangzhou Metro – Line 4, Line 6, Guangfo line, and Zhujiang New Town Automated People Mover System | 4 | 2005 | Lines 4 and 6 use 4-car L-type trains, 67m long. Guangfo line uses 4-car B-type trains, 76 metres (249 ft) long. Zhujiang New Town Automated People Mover uses 14 Bombardier Transportation's APM 100 cars built in Pittsburgh, Pennsylvania. [29] | |
Nanjing | Nanjing Metro – Line S6, Line S7, Line S8, Line S9 | 4 | 2014 | Lines S6, S7, and S8 use 4-car B-type trains, 76 metres (249 ft) long, while line S9 uses 3-car B-type trains, 57 m long. | |
Shanghai | Shanghai Metro – Line 5 (branch), Line 6, and Pujiang Line | 3 | 2003 | Line 5 branch and line 6 use 4-car, 76 metres (249 ft) long, C-type trains. Pujiang line uses 11 Bombardier Transportation's APM 300 cars. [30] | |
Tianjin | Tianjin Metro – Line 9 | 1 | 2004 | Line 9 uses 4-car B-type trains, 76 metres (249 ft) long. | |
Wuhan | Wuhan Metro – Line 1 | 1 | 2004 | Line 1 uses 4-car B-type trains, 76 metres (249 ft) long. | |
Hong Kong | Disneyland Resort Line (Penny's Bay Rail Link) | 1 | 2005 | Trains: 4 compartments without drivers. Some[ clarification needed ] of the M-Train cars used in the Disneyland Resort line were originally ordered from 1994–1998 as subtype H-Stock train (Phase 3 EMU, A/C 270–291, B/C 486–496). Units A/C274 A/C281 A/C284 A/C289 A/C291 and B/C490 are now used on the Disneyland Resort line. | |
South Island line | 1 | 2016 | Trains: 3-car S-Trains. Categorised as a "medium-capacity rail transport system". [31] | ||
Macau | Macau Light Rapid Transit | 1 | 2019 | Uses Mitsubishi Heavy Industries Crystal Mover APM vehicles with rubber tyres running on concrete tracks. [32] Mitsubishi supplied 55 two-car trains that are fully automated (driverless) and utilise a rubber-tyred APM system. [33] They have a capacity of up to 476 passengers. [32] | |
Denmark | Copenhagen | Copenhagen Metro | 4 | 2002 | Driverless vehicle system. Trains: 3-car configuration, 39 metres (128 ft) length. |
France | Lille | Lille Metro | 2 | 1983 | VAL people mover system. Trains: 2-car configuration, 26 metres (85 ft) in length, with a passenger capacity of 208–240 per train (depending on VAL 206 or VAL 208 train). UrbanRail.net describes it as a "new generation of metro systems". [34] |
Lyon | Lyon Metro | 4 | 1978 | Trains: Driverless, 2 or 3-car configuration, 36 metres (118 ft) to 54 metres (177 ft) long. Can carry 252 to 325 people in a train. | |
Marseille | Marseille Metro | 2 | 1977 | Trains: 4-car configuration, 65 metres (213 ft) long. | |
Paris | Orlyval | 1 | 1991 | VAL people mover system, using VAL 206 vehicles. | |
Rennes | Rennes Metro | 2 | 2002 | VAL people mover system – while trains have 80 second headways, they can only carry 158 people per train. Described as a "mini-metro line". [35] | |
Toulouse | Toulouse Metro | 2 | 1993 | Although a VAL system, LRTA defines the system as "Metro". On the other hand, UrbanRail.net describes it as a "light metro VAL system". [36] | |
Hungary | Budapest | Budapest Metro Line 1 | 1 | 1896 | Trains: The line uses 3-car, 30 metres (98 ft) long trains that can hold up to 190 people. |
India | Gurgaon | Rapid Metro Gurgaon | 1 | 2013 | Driverless vehicle system. The line is designed to carry up to 30,000 passengers per hour. [37] [38] [39] Several articles define the system as "light metro". [37] [38] [39] |
Indonesia | Jakarta | Jakarta LRT [40] | 1 | 2019 [41] | Jakarta LRT is the first line in Jakarta to use a third rail system. It uses standard gauge (1435 mm). One trainset can carry 270-278 passengers [42] |
Jabodebek LRT | 2 | 2023 | The elevated standard-gauge line is electrified at 750V dc third rail. It has moving block signalling designed for headways of 2–3 minutes. [43] | ||
Palembang | Palembang LRT | 1 | 2018 | Trains uses 3-car configuration | |
Italy | Brescia | Brescia Metro | 1 | 2013 | Trains: 3-car configuration, 39 metres (128 ft) length. |
Catania | Catania Metro | 1 | 1999 | Single-tracked at-grade section limits headways to 15 minutes. Currently 4.6 kilometres (2.9 mi) of double track extension are under construction. [44] | |
Genoa | Genoa Metro | 1 | 1990 | Generally considered to be a "light metro" considering its low frequency, limited hours of operation and reduced transport capacity. It is actually categorised as "light rail" by LRTA. | |
Milan | MeLA [45] Milan Metro: Line 4 and Line 5 | 3 | 1999, 2013, 2022 | Driverless vehicle system. Trains: 4-car configuration, 50.5 metres (166 ft) length, capacity for 536 passengers. | |
Naples | Naples Metro | 1 | 1993 | Line 6 is categorised as "light metro", with only 16 minute headways. Line 1 has a single-tracked tunnel section. | |
Perugia | MiniMetro | 1 | 2008 | LRTA defines the system as a "light metro", while they regarded the same system in Laon, which ceased in 2016, as a "cable monorail". | |
Turin | Turin Metro | 1 | 2006 | VAL people mover system. | |
Japan | Hiroshima | Astram Line | 1 | 1994 | Driverless vehicle system. A small part of the underground section was built as Metro system. |
Kobe | Kobe New Transit | 2 | 1981, 1990 | Trains: Port Island Line and Rokkō Island Line. Both consist of 4-car configuration (300 people per train), but the platforms are made for fitting to 6-car configuration. | |
Osaka | Nankō Port Town Line | 1 | 1981 | Trains: 4-car configuration, but the platforms are designed to apply to 6-car. | |
Saitama | New Shuttle | 1 | 1983 | Trains: 6-car configuration, rubber-tyred and operated manually. | |
Tokyo | Nippori-Toneri Liner | 1 | 2008 | Trains: 5-car configuration, driverless vehicle system. | |
Yurikamome | 1 | 1995 | Trains: 6-car configuration, driverless vehicle system. | ||
Yokohama | Kanazawa Seaside Line | 1 | 1989 | Driverless vehicle system. | |
Malaysia | Kuala Lumpur | Rapid KL – Kelana Jaya Line, Ampang Line, Sri Petaling Line, Shah Alam Line | 4 | 1998, 1996 | KELANA JAYA LINE: Bombardier INNOVIA ART 200 Trains: Mixed 2-car, [46] 4-car configuration fleet Bombardier Innovia Metro 300 Trains: 4-car configuration AMPANG AND SRI PETALING LINES: CRRC Zhuzhou LRV Trains: 6-car configuration SHAH ALAM LINE: 3-car CRRC Light Rail vehicles |
Philippines | Manila | LRT Line 1 | 1 | 1984 | Trains: Line began with 2-car configuration, reconfigured to 3-car in 1999, [47] and procured new 4-car trains in 1999, [47] 2006, and 2022. [48] Line was originally designed for 18,000 p/h/d capacity, [47] increased to 40,000 p/h/d in 2006. [49] Categorised as "light rail" by LRTA. [50] |
MRT Line 3 | 1 | 1999 | Trains: 3-car configuration, with a max. capacity of 1,182 passengers, and running with 3.5–4 minute headways. 4-car trains with a max. capacity of 1,576 passengers were introduced in 2022. [51] However, line is designed for 23,000 p/h/d capacity, expandable to 48,000 p/h/d. [52] | ||
Russia | Moscow | Moscow Metro: Line 12 – Butovskaya Line | 1 | 2003 | Can carry 6,700 p/h/d.[ citation needed ]Trains: 3-car configuration, ~85 metres (279 ft) length |
Singapore | Singapore | Singapore MRT: Circle line, Downtown line and Jurong Region line (future) | 3 | 2009, 2013, 2027 | The Circle line rolling stock consists of Alstom C830 and C830C trains in 3-car formations with a capacity of 931 passengers. The Downtown line rolling stock consists of Bombardier C951 & C951A trains also in 3-car formations with a capacity of 931 passengers. The Jurong Region line rolling stock will consist of Hyundai Rotem J151 trains in 3-car formations with a capacity of 600 passengers. |
South Korea | Busan | Busan Metro Line 4 | 1 | 2009 | Unmentioned by LRTA, though UrbanRail.net categorises the line as a "light metro". [53] |
Busan–Gimhae Light Rail Transit | 1 | 2011 | Driverless vehicle system. Trains: 2-car configuration. Unmentioned by LRTA, but the operator calls the system "light rail". [18] | ||
Gimpo | Gimpo Goldline | 1 | 2019 | Each train consists of 2-car trains and runs unmanned. | |
Incheon | Incheon Subway Line 2 | 1 | 2016 | Each train consists of 2-car trains and runs unmanned. | |
Seoul | Ui LRT | 1 | 2017 | Each train consists of 2-car trains and runs unmanned. | |
Sillim Line | 1 | 2022 | Each train consists of 2-car trains and runs unmanned. | ||
Uijeongbu | U Line | 1 | 2012 | ||
Yongin | Yongin Everline | 1 | 2013 | Driverless vehicle system applied. | |
Spain | Barcelona | Barcelona Metro: Line 8 and Line 11 | 2 | 2003 | Driverless vehicle system. Trains: 2-car configuration. LRTA also categorises Line 8 as "light metro". |
Málaga | Málaga Metro | 1 | 2014 | System contains at-grade intersections on surface section of Line 1. [54] Described as a "light metro" by at least one rail publication. [55] | |
Palma, Majorca | Palma Metro: Line M1 | 1 | 2007 | Mostly underground line operates with just 15-minute headways and 2-car trains (306 passengers max.); one reference [56] even categorises line as "light rail". | |
Seville | Seville Metro | 1 | 2000 | Trains:31.3 metres (103 ft) length with a max. capacity of 280 passengers. Described as a "light metro" by rolling stock manufacturer, CAF. [57] | |
Switzerland | Lausanne | Lausanne Métro | 2 | 1991 | Line M1 uses light rail vehicles, 30 metres (98 ft) long. Line M2 has driverless, rubber-tyred trains; 30 metres (98 ft) long.[ citation needed ] |
Taiwan | Taipei | Taipei Metro: Wenhu/Brown Line and Circular/Yellow Line | 2 | 1996, 2020 |
|
Taichung | Taichung Metro: Green Line | 1 | 2021 | 2-car EMU. [58] | |
Thailand | Bangkok | Bangkok MRT: MRT Purple Line | 1 | 2016 | 3-car configuration |
Turkey | Ankara | Ankaray Light Metro (A1 Line) | 1 | 1996 | Trains: 3-car configuration, approx. 90 metres (300 ft) length. Categorised as a "light rail" by LRTA, though Current capacity: 27,000 p/h/d. [59] |
Bursa | Bursaray | 2 | 2002 | Uses light rail cars, similar to Frankfurt U-Bahn | |
Istanbul | Istanbul Metro: M1 Line (Istanbul Hafif Metro) | 1 | 1989 | Trains: 4-car configuration. "Hafif Metro" literally translates as "Light Metro". Categorised as a "light rail" by LRTA. | |
İzmir | İzmir Metro: M1 Line (İzmir Hafif Rayli Metro Sistemi) | 1 | 2000 | Trains: 5-car configuration, upgraded from former 3- and 4-car configurations | |
United Kingdom | Glasgow | Glasgow Subway | 1 | 1896 | Gauge:4 ft (1,219 mm). Trains: 3-car configuration. |
London | Docklands Light Railway | 7 | 1987 | Driverless vehicle system. Trains: generally 2- to 3-car configuration. Categorised as a "light rail" by LRTA. | |
Tyne and Wear | Tyne and Wear Metro | 2 | 1980 | Trains: 2 MU configuration with 7 level crossings [60] it is technically a semi-metro [61] system. | |
United States | Detroit | Detroit People Mover | 1 | 1987 | Considered to be a "people mover". |
Honolulu | Skyline | 1 | 2023 | Trains: 4-car Hitachi Rail Italy Driverless Metro trains, 78m (256ft) long. | |
Miami | Metromover | 3 | 1986 | Considered to be a "people mover". | |
Philadelphia | Norristown High Speed Line (part of the SEPTA rail system) | 1 | 1907 | Operates on a private primarily surface-level "right-of-way" with partial triple-tracking, allowing for peak express services. Has been categorised by APTA as being "Light rapid rail transit" [62] (i.e. between "rapid transit (heavy rail)" and "light rail"). While it has high platforms and third rail power, all intermediate stops are flag stops and fares must be paid to the operator upon boarding except at the termini. This makes it difficult to categorise, as it has the infrastructure and rolling stock of a light metro but is operated in many ways like a trolley or bus service. | |
Venezuela | Maracaibo | Maracaibo Metro | 1 | 2006 | Trains: 3-car trainset configuration, ~58 metres (190 ft) length (originally designed for Prague Metro). Categorised as a "light rail" by LRTA. |
Valencia | Valencia Metro | 1 | 2007 | Trains: 2-car Siemens SD-460 configuration, ~55 metres (180 ft) length. Categorised as a "light rail" by LRTA. |
Country | Location | System | Planned opening |
---|---|---|---|
Romania | Cluj-Napoca | Cluj-Napoca Metro | 2026 |
The following is the list of former-MCSs that either developed into a full rapid transit system, or which are no longer in operation:
Light rail is a form of passenger urban rail transit that uses rolling stock derived from tram technology while also having some features from heavy rapid transit.
Urban rail transit is a wide term for various types of local rail systems providing passenger service within and around urban or suburban areas. The set of urban rail systems can be roughly subdivided into the following categories, which sometimes overlap because some systems or lines have aspects of multiple types.
Various terms are used for passenger railway lines and equipment; the usage of these terms differs substantially between areas:
The Manila Light Rail Transit System, commonly known as the LRT, is an urban rail transit system that primarily serves Metro Manila, Philippines. Although categorized as a light rail system because it originally used light rail vehicles, it presently has characteristics of a rapid transit system, such as high passenger throughput, exclusive right-of-way, and later use of full metro rolling stock. The LRT is jointly-operated by the Light Rail Transit Authority (LRTA), a government corporation attached to the Department of Transportation (DOTr), and the Light Rail Manila Corporation (LRMC). Along with the Manila Metro Rail Transit System and the Metro Commuter Line of the Philippine National Railways, the system makes up Metro Manila's rail infrastructure.
The Metro Rail Transit Line 3, also known as the MRT Line 3, MRT-3, or Metrostar Express, is a rapid transit line in Metro Manila in the Philippines. The line runs in an orbital north to south route following the alignment of Epifanio de los Santos Avenue (EDSA). Despite its name, the line is more akin to a light rapid transit system owing to its tram-like rolling stock while having total grade separation and high passenger throughput. The line is officially known as the Yellow Line. Its current General Manager is Oscar Bongon.
Rail transportation in the Philippines is currently used mostly to transport passengers within Metro Manila and provinces of Laguna and Quezon, as well as a commuter service in the Bicol Region. Freight transport services once operated in the country, but these services were halted. However, there are plans to restore old freight services and build new lines. From a peak of 1,100 kilometers (680 mi), the country currently has a railway footprint of 533.14 kilometers (331.28 mi), of which only 129.85 kilometers (80.69 mi) are operational as of 2024, including all the urban rail lines. World War II, natural calamities, underspending, and neglect have all contributed to the decline of the Philippine railway network. In the 2019 Global Competitiveness Report, the Philippines has the lowest efficiency score among other Asian countries in terms of efficiency of train services, receiving a score of 2.4, and ranking 86th out of 101 countries globally. The government is currently expanding the railway network up to 1,900 kilometers (1,200 mi) by 2022 through numerous projects.
Kinki Sharyo Co., Ltd. is a Japanese manufacturer of railroad vehicles based in Osaka. It is an affiliate company of Kintetsu Corporation. In business since 1920 as Tanaka Rolling Stock Works, and renamed The Kinki Sharyo Co., Ltd in 1945, they produce rolling stock for numerous transportation agencies, ranging from Shinkansen high-speed trains to light rail vehicles. Kinki Sharyo is listed on the Tokyo Stock Exchange as TYO: 7122.
Yongin EverLine is a fully automated driverless 18.1-kilometer (11.2 mi) people mover line in Yongin, Gyeonggi Province, Seoul Capital Area connecting Everland, South Korea's most popular theme park, to the Suin-Bundang Line of the Seoul Metropolitan Subway, a system which it is arguably a part of. The system is identical to the AirTrain JFK people mover and airport rail link in New York City, using single-car Bombardier Advanced Rapid Transit vehicles controlled by Bombardier CITYFLO 650 automatic train control technology.
The Light Rail Transit Authority (LRTA) is a public transport operator that is responsible for the construction, operation, maintenance and/or lease of Manila Light Rail Transit System in the Philippines. It is organized as a government-owned and controlled corporation under the Department of Transportation (DOTr) as an attached agency.
The Light Rail Transit Line 1, commonly referred to as LRT Line 1 or LRT-1, is a light rapid transit system line in Metro Manila, Philippines, operated by Light Rail Manila Corporation (LRMC) and owned by the Light Rail Transit Authority (LRTA) as part of the Manila Light Rail Transit System. Originally referred to as Metrorail and the Yellow Line, LRT Line 1 was reclassified to be the Green Line in 2012. It travels in a general north–south direction from Dr. Santos to Monumento, and then east–west from Monumento to Fernando Poe Jr. Currently, the line consists of 25 stations and runs on 25.9 kilometers of fully elevated route. Although it has the characteristics of light rail, such as with the type of rolling stock used, it is more akin to a rapid transit system owing to its total grade separation and high passenger throughput.
The Light Rail Transit Line 2, also known as LRT Line 2, LRT-2, or Megatren, is a rapid transit line in Metro Manila in the Philippines owned and operated by the Light Rail Transit Authority (LRTA). The line generally runs in an east–west direction between Recto in Manila and Antipolo. The line is officially referred to as the Purple Line.
Light rail is a commonly used mode of public transit in North America. The term light rail was coined in 1972 by the Urban Mass Transportation Administration to describe new streetcar transformations which were taking place in Europe and the United States. The Germans used the term Stadtbahn, which is the predecessor to North American light rail, to describe the concept, and many in UMTA wanted to adopt the direct translation, which is city rail. However, in its reports, UMTA finally adopted the term light rail instead.
Although tram and Heritage streetcar systems date to the late 19th and early 20th centuries, many old systems were closed during the mid-20th century because of the advent of automobile travel. This was especially the case in North America, but postwar reductions and shutdowns also occurred on British, French and other Western European urban rail networks. However, traditional tramway systems survived, and eventually even began to thrive from the late 20th century onward, some eventually operating as much as when they were first built over a century ago. Their numbers have been augmented by modern tramway or light rail systems in cities which had discarded this form of transport.
Rapid transit or mass rapid transit (MRT) or heavy rail, commonly referred to as metro, is a type of high-capacity public transport that is generally built in urban areas. A grade separated rapid transit line below ground surface through a tunnel can be regionally called a subway, tube, metro or underground. They are sometimes grade-separated on elevated railways, in which case some are referred to as el trains – short for "elevated" – or skytrains. Rapid transit systems are railways, usually electric, that unlike buses or trams operate on an exclusive right-of-way, which cannot be accessed by pedestrians or other vehicles.
Urban rail transit in India plays an important role in intracity transportation in the major cities which are highly populated. It consists of rapid transit, suburban rail, monorail, and tram systems.
The Light Rail Transit Line 6 is a proposed rapid transit system in Cavite, Philippines. There have been two proposals for the line, with the first one shelved immediately in 2018. Another proposal emerged in 2017 and is currently under review by the National Economic and Development Authority (NEDA).
The LRTA 1100 class is the second-generation class of high-floor light rail vehicles of the LRT Line 1.
Rail transportation in the Greater Manila Area is a major part of the transportation system in Metro Manila and its surrounding areas. The railway network, collectively known as the Greater Capital Region Railway System, consists of the Manila Light Rail Transit System (LRT), Manila Metro Rail Transit System (MRT), and Philippine National Railways lines within the region.
在轨道交通选型上,采用中运量 (MCS)、胶轮转向轨制式、噪音相对小、启停加减速快捷等特点的APM全自动无人驾驶系统