Street hierarchy

Last updated
The network structure of Radburn, New Jersey exemplifies the concept of street hierarchy of contemporary districts. (The shaded area was not built.) Radburn Cellular Street Pattern.jpg
The network structure of Radburn, New Jersey exemplifies the concept of street hierarchy of contemporary districts. (The shaded area was not built.)

The street hierarchy is an urban planning technique for laying out road networks that exclude automobile through-traffic from developed areas. It is conceived as a hierarchy of roads that embeds the link importance of each road type in the network topology (the connectivity of the nodes to each other). Street hierarchy restricts or eliminates direct connections between certain types of links, for example residential streets and arterial roads, and allows connections between similar order streets (e.g. arterial to arterial) or between street types that are separated by one level in the hierarchy (e.g. arterial to highway and collector to arterial). By contrast, in many regular, traditional grid plans, as laid out, higher order roads (e.g. arterials) are connected by through streets of both lower order levels (e.g. local and collector). An ordering of roads and their classification can include several levels and finer distinctions as, for example, major and minor arterials or collectors.

Contents

At the lowest level of the hierarchy, cul-de-sac streets, [1] by definition non-connecting, link with the next order street, a primary or secondary "collector"—either a ring road that surrounds a neighbourhood, or a curvilinear "front-to-back" path—which in turn links with the arterial. Arterials then link with the intercity highways at strictly specified intervals at intersections that are either signalized or grade separated.

In places where grid networks were laid out in the pre-automotive 19th century, such as in the American Midwest, larger subdivisions have adopted a partial hierarchy, with two to five entrances off one or two main roads (arterials) thus limiting the links between them and, consequently, traffic through the neighbourhood.

Since the 1960s, street hierarchy has been the dominant network configuration of suburbs and exurbs in the United States, Canada, Australia, and the UK. It is less popular in Latin America, Western Europe, and China.

Large subdivisions may have three- or even four-tiered hierarchies, feeding into one or two wide arterials, which can be as wide as the ten lane Champs-Élysées or Wilshire Boulevard. Arterials at this level of traffic volume generally require no fewer than four lanes in width; and in large contemporary suburbs, such as Naperville, Illinois, or Irvine, California, are often eight or ten lanes wide. Adjacent street hierarchies are rarely connected to one another.

History

Hierarchical street network in the Medina of Tunis includes culs-de-sac (green), local streets (yellow), collectors (orange), and arterials (red) linking the gates to the city centre. MedinaTunisStreetNetwork.jpg
Hierarchical street network in the Medina of Tunis includes culs-de-sac (green), local streets (yellow), collectors (orange), and arterials (red) linking the gates to the city centre.

In the pre-automotive era of cities, traces of the concept of a hierarchy of streets in a network appear in Greek and subsequent Roman town plans. The main feature of their classification is their size. In Roman cities, such as Pompeii, major thoroughfares (e.g. the decumanus) had a width of 12.2 m, secondary streets (e.g. the cardo) 6 m and tertiary streets (e.g. vicinae) measured 4.5 meters. The first allowed for two way cart traffic, the second generally only one, while the third only loaded animals. Narrower streets that could only accommodate pedestrians were also present in both Greek and Roman cities. Thus the restriction on connections between major streets on particular modes (carts and chariots) was the effect of the width of the street itself and not the lack of linkage. This method is akin to the contemporary concept of filtered permeability.

A clearer record of a stricter hierarchical order of streets appears in surviving and functioning Arabic-Islamic cities that originate in the late first millennium AD such as the Medina of Tunis, Marrakesh, Fez, and Damascus. In these cases there are four classes of streets starting with the cul-de-sac type (1.84-2.00 m wide) and moving up to the local (third order connector), then a collector that usually surrounds a residential quarter (second order connector) and, finally, to the first order connector (arterial). The latter connector usually crossed the city through its centre and led to the city gates (see drawing). These arterials were decreed to be at least wide enough for two crossing loaded animals, 3.23 to 3.5 m. [2] This tendency for hierarchical organization of streets was so pervasive in the Arab-Islamic tradition that even cities that were laid out on a uniform grid by Greeks or Romans, were transformed by their subsequent Islamic conquerors and residents, as in the case of Damascus. [3]

In the automotive 20th century, the street hierarchy concept was first elaborated by Ludwig Hilberseimer, in his City Plan of 1927. His major priorities were increasing the safety of primary school-age children walking to school, and increasing the speed of traffic.

Planners also began to modify the grid into a superblock system, where high traffic generators such as shops and apartments were placed on arterial roads that formed the boundaries of the superblock. Schools, churches, and parks were located at the center, and houses filled the residential blocks. Within the superblock, T-intersections, and culs-de-sac acted as traffic calming devices, slowing or preventing through traffic.

This model prevailed between roughly 1930 and 1955, in "instant cities" such as Lakewood, California, and the Los Angeles district of Panorama City. The street hierarchy has been the dominant model for network layout in new suburbs since the Levittowns.

In the 1960s, when operations research and rational planning were the prevailing analytical tools, street hierarchy was seen as a major improvement over the regular, undifferentiated, "messy" grid system. It discouraged dangerous high-speed driving and street racing in residential areas. New master-planned suburbs often codified the street hierarchy into their zoning laws, restricting the use of grid layouts in residential districts.

Eventually, the street hierarchy was also adapted for industrial parks and commercial developments. Use of the street hierarchy is a nearly universal characteristic of the "edge city", a roughly post-1970 form of urban development exemplified by places such as Tysons Corner, Virginia, and Schaumburg, Illinois.

Criticisms and discussion

Social commentators and urban planners have often pointed out that the street hierarchy arrangement has serious limitations. These criticisms are generally part of a broader indictment of mid-20th-century urban planning, with critics charging that planners have only considered the needs of young children and their working-age parents in creating the spatial arrangement of the late 20th and early 21st centuries.

Financial costs

Some planners and economists consider the street hierarchy to be financially wasteful, since it requires more miles of street to be laid than a grid plan to serve a much smaller population.

While housing unit density and, consequently, population density affects the per capita cost of infrastructure, it is not inextricably linked to the street network pattern whether hierarchical or uniform. Theoretically and historically a city block can be built at high or low density, depending on the urban context and land value; central locations command much higher land prices than suburban. The costs for street infrastructure depend largely on four variables: street width (or Right of Way), street length, block width, and pavement width. These variables affect the total street length of a neighbourhood and the proportion of land area it consumes. Street length increases costs proportionately while street area represents an opportunity cost of land unavailable for development. Studies show that regular, undifferentiated grid patterns generally incur infrastructure costs about 20 to 30 percent higher than the discontinuous hierarchical street patterns, reflecting an analogous street length increase.[ citation needed ]

In suburban areas subject to property tax caps such as California's Prop 13, the enormous per-capita expenditures required to maintain streets mean that only houses costing over half a million dollars can provide enough property tax revenue to cover the cost of maintaining their street hierarchies. In areas with low developer impact fees, cities often fail to provide adequate maintenance of internal and arterial roads serving newly constructed subdivisions. [4] Municipal records show that street maintenance represents a large portion of a municipal budget, particularly in Northern climates where snow removal is added to the regular lifecycle upkeep. Two planning strategies have been suggested to deal with these costs in new developments: reduction of street length or increase in household density, or a combination of the two. Of the two strategies, reducing street length is the most effective and permanent; densities can vary over time and cannot be effectively controlled.

Pedestrian degradation

New Urbanists decry the street hierarchy's deleterious effects on pedestrian travel, which is made easy and pleasant within the subdivision but is virtually impossible outside it. Residential subdivisions usually have no pedestrian connections between themselves and adjacent commercial areas, and are often separated from them by high masonry walls intended to block noise. New Urbanist writers like Andres Duany and James Howard Kunstler often point out the absurd nature of car trips forced by the street hierarchy: while a grocery store may be less than a quarter-mile distant physically from a given home in a subdivision, the barriers to pedestrian travel presented by the street hierarchy mean that getting a gallon of milk requires a car trip of a mile or more in each direction. Jane Jacobs, among other commentators, has gone so far as to say that modern suburban design—of which the street hierarchy is the key component—is a major factor in the sedentary lifestyle of today's children. [5] Mass transit advocates contend that the street hierarchy's denigration of pedestrian traffic also reduces the viability of public transportation in areas where it prevails, sharply curtailing the mobility of those who do not own cars or cannot drive them, such as disabled persons, teenagers, and the elderly.

Traffic issues

Congestion causes and remedies

Most traffic engineers consider the street hierarchy to be optimal, since it eliminates through traffic on all streets except arterials. However, some have contended that it actually exacerbates traffic congestion, leading to air pollution and other undesirable outcomes. [6] An alternative to street hierarchy, Traditional Neighborhood Development (TND) networks, recommended by the Institute of Traffic Engineers, implies that a type of hierarchy is desirable nonetheless. It suggests that "While TND street networks do not follow the same rigid functional classification of conventional neighborhoods with local, collector, arterial and other streets, TND streets are hierarchical to facilitate necessary movements." [7]

A more precise image of the prevalent thinking about structuring road networks can be found in the 2006 ITE/CNU recommended practice for the design of urban thoroughfares. [8] In it, the functional, traffic-engineering classifications of roads are replaced by three basic road types: boulevard, avenue and street with the addition of a second type of boulevard – the multi-way. These road types reflect familiar names and images of roads and also real conditions in an urban environment, where each type normally performs multiple functions but only up to a hierarchical limit. For example, a boulevard can function as a principal and minor arterial but not as a collector or local access street; an avenue, as principal/minor arterial and a collector but not as a street; while a street can serve as minor arterial, a collector and a local (access road) but not as a principal arterial. These exclusions of functional roles derive from the design intention to put an emphasis either on mobility or access; both cannot be accommodated concurrently in every case.

These hierarchical distinctions of road types become clearer when considering the recommended design specifications for the number of through lanes, design speed, intersection spacing and driveway access. As the number of lanes increase from two to four and then six and, correspondingly, the operating speed from 40 km/h to about 60 km/h, the intersection spacing increases from a 90–200 m range to its double (200–400 m). Similarly, the restriction on driveway access becomes more stringent and, in effect, impossible in the case of a required raised median for boulevards and multi-way boulevards. Thus a multi-way and simple boulevard (corresponding to the functional definition of arterial) are deemed to perform their mobility function better when access to them is limited to intervals between 200 and 400 m, that is every three to five normal, 80-m-wide city blocks.

A common practice in conventional subdivision design is a road pattern that limits access to the arterials (or boulevards) to few points of entry and exit. These choke points produce traffic congestion in large subdivisions at rush hour periods. Congestion also increases on the boulevard (regional arterial) if the access restrictions are not observed. Furthermore, congestion can be density-dependent in addition to being configuration-dependent. That is, the same geometric configuration ideally suited to improve traffic flow, roundabouts for example, fails to function adequately beyond a certain threshold of traffic volume. Increased traffic volume is a direct outcome of increased household density of a district.

These relationships of congestion to layout geometry and density have been tested in two studies using computer-based traffic modeling applied to large subdivisions. A 1990 study [9] compared the traffic performance in a 700-acre (2.8-km2) development that was laid out using two approaches, one with a hierarchical street layout that included cul-de-sac streets and the other a Traditional Neighborhood Design street layout. The study concluded that the non-hierarchical, traditional layout generally shows lower peak speed and shorter, more frequent intersection delays than the hierarchical pattern. The traditional pattern is not as friendly as the hierarchical to long trips but friendlier to short trips. Local trips in it are shorter in distance but about equivalent in time with the hierarchical layout.

A later more extensive comparative traffic study [10] of an 830-acre (3.4-km2) subdivision tested three types of layouts: conventional, TND, and Fused Grid. It also tested the resilience of all three layouts to an increased traffic load generated by increased residential densities. The study concluded that all types of layouts perform adequately in most low to moderate population density scenarios up to a certain threshold of 62 persons per hectare (ppha). As densities increased beyond the threshold so did travel time. At a 50% density increase to 90 ppha, the conventional hierarchical pattern showed the highest increase in travel time (20%), followed by the TND (13%) and the fused grid (5%). When the density increased further to include one local job per two residents, delays increased respectively by 139%, 90% and 71% for the conventional, traditional, and fused grid. This confirms the density influence on congestion levels and that a hierarchical pattern can improve flow if laid out following the access restrictions proposed in the ITE/CNU practice guide.

In edge cities the number of cars exiting a large subdivision to an arterial that links to a highway can be extremely high, leading to miles-long queues to get on freeway ramps nearby. See Rat running .

Safety

Transportation planners and traffic engineers have expressed concerns over the traffic safety drawbacks presented by the street hierarchy. Recent studies have found higher traffic fatality rates in outlying suburban areas than in central cities and inner suburbs with smaller blocks and more-connected street patterns. [11] [12] While some of this disparity is the result of distance from emergency medical facilities (hospitals are usually not built in a newly developed suburban area until a fairly late stage in its development), it is clear that the higher speeds engendered by the street hierarchy increase the severity of accidents occurring along arterial roads.

An earlier study [13] found significant differences in recorded accidents between residential neighbourhoods that were laid out on an undifferentiated grid and those that included culs-de-sac and crescents in a hierarchical structure. The frequency of accidents was significantly higher in the grid neighbourhoods.

Two newer studies examined the frequency of collisions in two regional districts using the latest analytical tools. They investigated the potential correlation between street network patterns and frequency of collisions. In one study, [14] cul-de-sac hierarchical networks appeared to be much safer than the uniform grid networks, by nearly three to one. A second study [15] found the grid plan to be the least safe by a significant margin with respect to all other street patterns.

A 2009 study [16] suggests that land use patterns play a significant role in traffic safety and should be considered in conjunction with the network pattern. While all intersection types in general reduce the incidence of fatal crashes, four-way intersections, which occur regularly in a uniform grid, increase total and injurious crashes significantly. The study recommends hybrid street networks with dense concentrations of T-intersections and concludes that a return to the 19th century gridiron is undesirable.

Banning on-street parking

Banning on-street parking can provide social benefits if the car users and the general public pay for off-street parking. [17] [18] [19]

Future prospects

United States

While street hierarchies remain the default mode of suburban design in the United States, its 21st century usefulness depends on the prevalence of low density developments. To the degree that developable land becomes scarce in coastal urban areas and in geographically constrained inland cities such as Tucson, Las Vegas, and Salt Lake City, the street hierarchy's inability to handle any but the lowest population densities is a long-term liability. The street hierarchy is also unpopular in the coastal city of New Orleans because of its geographic barriers, and because like Philadelphia, New York, and Cleveland, New Orleans already had suburbs before the new design became popular. Grids were used in New Orleans to fit a population that had at one time reached over 700,000 into 180 square miles (470 km2) of land with over 20 percent of that number being dedicated to uninhabitable wetlands. There a street hierarchy took up too much space to be economical. Real estate developers in areas with high land prices, such as Southern California's Inland Empire, are finding that the relatively high population density of contemporary subdivisions is leading to severe traffic congestion on arterial roads that were country lanes a decade earlier. The street hierarchy is also becoming less attractive as awareness increases of the environmental consequences of the urban planning paradigm of which it is an integral part. The "smart growth" movement calls for street patterns with a high degree of connectivity, and with it a more balanced provision for various travel modes, both vehicular and non-vehicular.

Europe

The 1967 design of Milton Keynes, with its (national speed limit) grid roads at 1 km intervals containing 'organic' road lay-out grid-squares, was strongly founded on the 'street hierarchy' principle. The 2006 expansion plans for Milton Keynes will abandon this model in favour of "mixed-use traditional British city streets".[ citation needed ]

Developing countries

In countries such as India, where automobile ownership is increasing at double-digit annual rates, the street hierarchy is becoming increasingly popular as suburban development takes on forms strongly resembling those of American exurbs. However, the suburban-like cities in China are the aftermath of excessive implementing hierarchical street-layout and rapid urban development. With high-rise residential towers, over-engineered roads and public transportation systems, they are distinctively different from American suburbs. The street hierarchy theory forms the center of the Chinese planning system which was adapted from ex-soviet in 60's. Today, Chinese planning schools are continuing to teach the theory unaware of its effects on the suburbanization, congestion and wasteful road-engineering.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Suburb</span> Human settlement that is part of or close to a larger city or town

A suburb is an area within a metropolitan area which has a higher or lower population density and sometimes less detached housing. In many metropolitan areas suburbs rise in population during the day and are where most jobs are located; being major commercial and job hubs, many suburbs also exist as separate residential communities within commuting distance of a larger city. Suburbs can have their own political or legal jurisdiction, especially in the United States, but this is not always the case, especially in the United Kingdom, where most suburbs are located within the administrative boundaries of cities. In most English-speaking countries, suburban areas are defined in contrast to central city or inner city areas, but in Australian English and South African English, suburb has become largely synonymous with what is called a "neighborhood" in the U.S., but it is used in contrast with inner city areas.

<span class="mw-page-title-main">Grid plan</span> Type of urban plan in which city streets form a grid

In urban planning, the grid plan, grid street plan, or gridiron plan is a type of city plan in which streets run at right angles to each other, forming a grid.

<span class="mw-page-title-main">Bicycle-friendly</span> Urban planning prioritising cycling

Bicycle-friendly policies and practices help some people feel more comfortable about traveling by bicycle with other traffic. The level of bicycle-friendliness of an environment can be influenced by many factors including town planning and cycling infrastructure decisions. A stigma towards people who ride bicycles and fear of cycling is a social construct that needs to be fully understood when promoting a bicycle friendly culture.

<span class="mw-page-title-main">Dead end street</span> Street with only one way in and out

A dead end, also known as a cul-de-sac, no through road or no exit road, is a street with only one inlet or outlet.

<span class="mw-page-title-main">Edge city</span> New unstructured settlement created near a major city

Edge city is a term that originated in the United States for a concentration of business, shopping, and entertainment outside a traditional downtown or central business district, in what had previously been a suburban residential or rural area. The term was popularized by the 1991 book Edge City: Life on the New Frontier by Joel Garreau, who established its current meaning while working as a reporter for The Washington Post. Garreau argues that the edge city has become the standard form of urban growth worldwide, representing a 20th-century urban form unlike that of the 19th-century central downtown. Other terms for these areas include suburban activity centers, megacenters, and suburban business districts. These districts have now developed in many countries.

<span class="mw-page-title-main">Urban sprawl</span> Expansion of auto-oriented, low-density development in suburbs

Urban sprawl is defined as "the spreading of urban developments on undeveloped land near a more or less densely populated city". Urban sprawl has been described as the unrestricted growth in many urban areas of housing, commercial development, and roads over large expanses of land, with little concern for very dense urban planning. Sometimes the urban areas described as the most "sprawling" are the most densely populated. In addition to describing a special form of urbanization, the term also relates to the social and environmental consequences associated with this development. In modern times some suburban areas described as "sprawl" have less detached housing and higher density than the nearby core city. Medieval suburbs suffered from the loss of protection of city walls, before the advent of industrial warfare. Modern disadvantages and costs include increased travel time, transport costs, pollution, and destruction of the countryside. The revenue for building and maintaining urban infrastructure in these areas are gained mostly through property and sales taxes. As most jobs in the US are now located in suburbs generating much of the revenue, although a lack of growth will require higher tax rates.

<span class="mw-page-title-main">City block</span> Smallest area that is surrounded by streets

A city block, residential block, urban block, or simply block is a central element of urban planning and urban design.

<span class="mw-page-title-main">Living street</span> Traffic calming in spaces shared between road users

A living street is a street designed with the interests of pedestrians and cyclists in mind by providing enriching and experiential spaces. Living streets also act as social spaces, allowing children to play and encouraging social interactions on a human scale, safely and legally. Living streets consider all pedestrians granting equal access to elders and those who are disabled. These roads are still available for use by motor vehicles; however, their design aims to reduce both the speed and dominance of motorized transport. The reduction of motor vehicle dominance creates more opportunities for public transportation.

<span class="mw-page-title-main">Road hierarchy</span> Hierarchy in road traffic

The road hierarchy categorizes roads according to their functions and capacities. While sources differ on the exact nomenclature, the basic hierarchy comprises freeways, arterials, collectors, and local roads. Generally, the functional hierarchy can more or less correspond to the hierarchy of roads by their owner or administrator.

<span class="mw-page-title-main">Arterial road</span> High-capacity urban road

An arterial road or arterial thoroughfare is a high-capacity urban road that sits below freeways/motorways on the road hierarchy in terms of traffic flow and speed. The primary function of an arterial road is to deliver traffic from collector roads to freeways or expressways, and between urban centres at the highest level of service possible. Therefore, many arteries are limited-access roads, or feature restrictions on private access. Because of their relatively high accessibility, many major roads face large amounts of land use and urban development, making them significant urban places.

<span class="mw-page-title-main">Collector road</span> Low-to-moderate-capacity road which serves to move traffic from local streets to arterial roads

A collector road or distributor road is a low-to-moderate-capacity road which serves to move traffic from local streets to arterial roads. Unlike arterials, collector roads are designed to provide access to residential properties. Rarely, jurisdictions differentiate major and minor collector roads, the former being generally wider and busier.

<span class="mw-page-title-main">Coving (urban planning)</span> Method of suburban planning

Coving is a method of suburban planning used in subdivision and redevelopment of cities characterized by organic lot shapes and home placement along meandering setbacks. When combined with a new form of street patterns, lot area is increased and road area and length is reduced – a demonstrated average 25% compared to conventional suburban platting. Coving is used as an alternative to conventional urban "grid" and suburban land development layouts in order to enhance curb appeal, eliminate monotony, reduce costs, such as road surfacing and street length, while increasing the amount of land available for construction. What makes coving so unique is that it gains its efficiency by increasing instead of decreasing existing regulatory minimums.

<span class="mw-page-title-main">Fused grid</span> Type of urban planning design

The fused grid is a street network pattern first proposed in 2002 and subsequently applied in Calgary, Alberta (2006) and Stratford, Ontario (2004). It represents a synthesis of two well known and extensively used network concepts: the "grid" and the "Radburn" pattern, derivatives of which are found in most city suburbs. Both concepts were conscious attempts to organize urban space for habitation. The grid was conceived and applied in the pre-automotive era of cities starting circa 2000 BC and prevailed until about 1900 AD. The Radburn pattern emerged in 1929 about thirty years following the invention of the internal combustion engine powered automobile and in anticipation of its eventual dominance as a means for mobility and transport. Both these patterns appear throughout North America. "Fused" refers to a systematic recombination of the essential characteristics of each of these two network patterns.

<span class="mw-page-title-main">Adelaide/Churchill, Saskatoon</span> Neighbourhood in Saskatoon, Saskatchewan, Canada

Adelaide/Churchill is a mostly residential neighbourhood located in south-central Saskatoon, Saskatchewan, Canada. It is a suburban subdivision, consisting mostly of low-density, single detached dwellings. As of 2009, the area is home to 3,445 residents. The neighbourhood is considered a middle-income area, with an average family income of $78,438, an average dwelling value of $287,976 and a home ownership rate of 90.3%.

<span class="mw-page-title-main">Avalon, Saskatoon</span> Neighbourhood in Saskatoon, Saskatchewan, Canada

Avalon is a mostly residential neighbourhood located in south-central Saskatoon, Saskatchewan, Canada. It is a suburban subdivision, consisting mostly of low-density, single detached dwellings. As of 2007, the area is home to 3,214 residents. The neighbourhood is considered a middle-income area, with an average family income of $65,000, an average dwelling value of $168,444 and a home ownership rate of 77.3%.

<span class="mw-page-title-main">Car dependency</span> Concept that city layouts favor automobiles over other modes of transportation

Car dependency is the concept that some city layouts cause cars to be favoured over alternate forms of transportation, such as bicycles, public transit, and walking.

<span class="mw-page-title-main">Permeability (spatial and transport planning)</span> Freedom of movement of traffic

In urban design, permeability and connectivity are terms that describe the extent to which urban forms permit movement of people or vehicles in different directions. The terms are often used interchangeably, although differentiated definitions also exist. Permeability is generally considered a positive attribute of an urban design, as it permits ease of movement and avoids severing neighbourhoods. Urban forms which lack permeability, e.g. those severed by arterial roads, or with many long culs-de-sac, are considered to discourage movement on foot and encourage longer journeys by car. There is some empirical research evidence to support this view.

<span class="mw-page-title-main">Honeycomb housing</span>

Honeycomb housing is an urban planning model pertaining to residential subdivision design.

<span class="mw-page-title-main">Traffic in Metro Manila</span>

According to a "Global Driver Satisfaction" survey conducted by the navigation app Waze in 2015, Metro Manila had the "worst traffic on Southeast Asia". Emerson Carlos, MMDA assistant general manager for operation has mentioned that in 2015, motor vehicle registrations in Metro Manila peaked at around 2.5 million.

<span class="mw-page-title-main">Stroad</span> Type of thoroughfare

A stroad is a type of thoroughfare that is a mix between a street and a road. Common in the United States and Canada, stroads are wide arterials that often provide access to strip malls, drive-throughs, and other automobile-oriented businesses. Urban planners have criticized stroads for their safety issues and poor efficiency. While streets provide access to shops and residences at safe traffic speeds, and roads can efficiently move traffic at high speed and volume, stroads pose dangers to drivers and pedestrians and are also prone to congestion.

References

  1. An Oregon Guide for Reducing Street Widths | Neighborhood Street Design Guidelines
  2. Besim Hakim 1986, Arabic-Islamic Cities – Building and Planning Principles KPI Ltd, London
  3. Nezar Alsayyad, 1991 Cities and Caliphs: on the Genesis of Arab Muslim Urbanism, Greenwood Press
  4. "Fresno May End Low-Fee Policy for Developers", Los Angeles Times, 23 August 2005
  5. "America's Most Sedentary Cities - Forbes". Forbes . June 3, 2016. Archived from the original on 2016-06-03.
  6. Budiansky, Stephen (December 1, 2000). "The Physics of Gridlock". The Atlantic.
  7. "Archived copy" (PDF). Washington, DC. Archived from the original (PDF) on 2011-02-20. Retrieved 2017-05-23.{{cite web}}: CS1 maint: archived copy as title (link)
  8. Context Sensitive Solutions in Designing Major Urban Thoroughfares for Walkable Communities
  9. Traditional Neighborhood Development: Will the Traffic Work? Presentation by Walter Kulash at the 11th Annual Pedestrian Conference in Bellevue WA, October 1990
  10. Taming the Flow—Better Traffic and Safer Neighbourhoods. Canada Mortgage and Housing Corporation, July 2008
  11. http://www.minority.unc.edu:9014/sph/minconf/2004/materials/ewing.etal.pdf [ dead link ]
  12. "Archived copy". Archived from the original on 2006-09-03. Retrieved 2006-09-03.{{cite web}}: CS1 maint: archived copy as title (link)
  13. Eran Ben-Joseph, Livability and Safety of Suburban Street Patterns: A Comparative Study (Berkeley, CA: Institute of Urban and Regional Development, University of California, Working Paper 641, 1995)
  14. Using Macrolevel Collision Prediction Models in Road SafetyPlanning Applications Gordon R. Lovegrove and Tarek Sayed Transportation Research Record: Journal of the Transportation Research Board, No. 1950, Transportation Research Board of the National Academies, Washington, D.C., 2006, pp. 73–82
  15. Sun, J. & Lovegrove, G. (2009). Research Study on Evaluating the Level of Safety of the Fused Grid Road Pattern, External Research Project for CMHC, Ottawa, Ontario
  16. Eric Dumbaugh and Robert Rae. Safe Urban Form: Revisiting the Relationship Between Community Design and Traffic Safety. Journal of the American Planning Association, Vol. 75, No. 3, Summer 2009
  17. Transportation Research Board | On-street versus off-street parking: an urban economic analysis | Created: Nov 12 2018
  18. Federal Highway Administration |On-Street Parking
  19. Shoup, Donald. "On-Street parking management v. Off-Street parking requirements." The access almanac 42 (2013): 38-40.
General