Magic state distillation

Last updated

Magic state distillation is a method for creating more accurate quantum states from multiple noisy ones, which is important [1] for building fault tolerant quantum computers. It has also been linked [2] to quantum contextuality, a concept thought to contribute to quantum computers' power. [3]

Contents

The technique was first proposed by Emanuel Knill in 2004, [4] and further analyzed by Sergey Bravyi and Alexei Kitaev the same year. [5]

Thanks to the Gottesman–Knill theorem, it is known that some quantum operations (operations in the Clifford group) can be perfectly simulated in polynomial time on a classical computer. In order to achieve universal quantum computation, a quantum computer must be able to perform operations outside this set. Magic state distillation achieves this, in principle, by concentrating the usefulness of imperfect resources, represented by mixed states, into states that are conducive for performing operations that are difficult to simulate classically.

A variety of qubit magic state distillation routines [6] [7] and distillation routines for qubits [8] [9] [10] with various advantages have been proposed.

Stabilizer formalism

The Clifford group consists of a set of -qubit operations generated by the gates {H, S, CNOT} (where H is Hadamard and S is ) called Clifford gates. The Clifford group generates stabilizer states which can be efficiently simulated classically, as shown by the Gottesman–Knill theorem. This set of gates with a non-Clifford operation is universal for quantum computation. [5]

Magic states

Magic states are purified from copies of a mixed state . [6] These states are typically provided via an ancilla to the circuit. A magic state for the rotation operator is where . A non-Clifford gate can be generated by combining (copies of) magic states with Clifford gates. [5] Since a set of Clifford gates combined with a non-Clifford gate is universal for quantum computation, magic states combined with Clifford gates are also universal.

Purification algorithm for distilling |M

The first magic state distillation algorithm, invented by Sergey Bravyi and Alexei Kitaev, is as follows. [5]

Input: Prepare 5 imperfect states.
Output: An almost pure state having a small error probability.
repeat
Apply the decoding operation of the five-qubit error correcting code and measure the syndrome.
If the measured syndrome is , the distillation attempt is successful.
else Get rid of the resulting state and restart the algorithm.
until The states have been distilled to the desired purity.

Related Research Articles

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Qubit</span> Basic unit of quantum information

In quantum computing, a qubit or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state quantum-mechanical system, and is one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously—a property that is fundamental to quantum mechanics and quantum computing.

Quantum error correction (QEC) is a set of techniques used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum state preparation, and faulty measurements. Effective quantum error correction would allow quantum computers with low qubit fidelity to execute algorithms of higher complexity or greater circuit depth.

<span class="mw-page-title-main">Trapped-ion quantum computer</span> Proposed quantum computer implementation

A trapped-ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap. Lasers are applied to induce coupling between the qubit states or coupling between the internal qubit states and the external motional states.

<span class="mw-page-title-main">Topological quantum computer</span> Hypothetical fault-tolerant quantum computer based on topological condensed matter

A topological quantum computer is a theoretical type of quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It utilizes quasiparticles, known as anyons, in two-dimensional systems. These anyons' world lines intertwine to form braids in a three-dimensional spacetime. These braids act as the logic gates of the computer. The primary advantage of using quantum braids over trapped quantum particles is enhanced stability. While small, cumulative perturbations can cause quantum states to decohere and introduce errors in traditional quantum computations, such perturbations do not alter the topological properties of the braids. This stability is akin to the difference between cutting and reattaching a string to form a different braid versus a ball colliding with a wall.

In quantum computing, a graph state is a special type of multi-qubit state that can be represented by a graph. Each qubit is represented by a vertex of the graph, and there is an edge between every interacting pair of qubits. In particular, they are a convenient way of representing certain types of entangled states.

In quantum computing, the Gottesman–Knill theorem is a theoretical result by Daniel Gottesman and Emanuel Knill that states that stabilizer circuits, circuits that only consist of gates from the normalizer of the qubit Pauli group, also called Clifford group, can be perfectly simulated in polynomial time on a probabilistic classical computer. The Clifford group can be generated solely by using CNOT, Hadamard, and phase gate S; and therefore stabilizer circuits can be constructed using only these gates.

Quantum cloning is a process that takes an arbitrary, unknown quantum state and makes an exact copy without altering the original state in any way. Quantum cloning is forbidden by the laws of quantum mechanics as shown by the no cloning theorem, which states that there is no operation for cloning any arbitrary state perfectly. In Dirac notation, the process of quantum cloning is described by:

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way quantum computer, also known as measurement-based quantum computer (MBQC), is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

In quantum computing, the threshold theorem states that a quantum computer with a physical error rate below a certain threshold can, through application of quantum error correction schemes, suppress the logical error rate to arbitrarily low levels. This shows that quantum computers can be made fault-tolerant, as an analogue to von Neumann's threshold theorem for classical computation. This result was proven by the groups of Dorit Aharanov and Michael Ben-Or; Emanuel Knill, Raymond Laflamme, and Wojciech Zurek; and Alexei Kitaev independently. These results built on a paper of Peter Shor, which proved a weaker version of the threshold theorem.

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

In quantum mechanics, the cat state, named after Schrödinger's cat, refers to a quantum state composed of a superposition of two other states of flagrantly contradictory aspects. Generalizing Schrödinger's thought experiment, any other quantum superposition of two macroscopically distinct states is also referred to as a cat state. A cat state could be of one or more modes or particles, therefore it is not necessarily an entangled state. Such cat states have been experimentally realized in various ways and at various scales.

Linear optical quantum computing or linear optics quantum computation (LOQC), also photonic quantum computing (PQC), is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

The KLM scheme or KLM protocol is an implementation of linear optical quantum computing (LOQC) developed in 2000 by Emanuel Knill, Raymond Laflamme and Gerard J. Milburn. This protocol allows for the creation of universal quantum computers using solely linear optical tools. The KLM protocol uses linear optical elements, single-photon sources and photon detectors as resources to construct a quantum computation scheme involving only ancilla resources, quantum teleportations and error corrections.

In quantum computing, a qubit is a unit of information analogous to a bit in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations.

Randomized benchmarking is an experimental method for measuring the average error rates of quantum computing hardware platforms. The protocol estimates the average error rates by implementing long sequences of randomly sampled quantum gate operations. Randomized benchmarking is the industry-standard protocol used by quantum hardware developers such as IBM and Google to test the performance of the quantum operations.

In quantum computing and quantum information theory, the Clifford gates are the elements of the Clifford group, a set of mathematical transformations which normalize the n-qubit Pauli group, i.e., map tensor products of Pauli matrices to tensor products of Pauli matrices through conjugation. The notion was introduced by Daniel Gottesman and is named after the mathematician William Kingdon Clifford. Quantum circuits that consist of only Clifford gates can be efficiently simulated with a classical computer due to the Gottesman–Knill theorem.

The Eastin–Knill theorem is a no-go theorem that states: "No quantum error correcting code can have a continuous symmetry which acts transversely on physical qubits". In other words, no quantum error correcting code can transversely implement a universal gate set, where a transversal logical gate is one that can be implemented on a logical qubit by the independent action of separate physical gates on corresponding physical qubits.

This glossary of quantum computing is a list of definitions of terms and concepts used in quantum computing, its sub-disciplines, and related fields.

References

  1. Campbell, Earl T.; Terhal, Barbara M.; Vuillot, Christophe (14 September 2017). "Roads towards fault-tolerant universal quantum computation" (PDF). Nature. 549 (7671): 172–179. arXiv: 1612.07330 . Bibcode:2017Natur.549..172C. doi:10.1038/nature23460. PMID   28905902. S2CID   4446310.
  2. Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph (11 June 2014). "Contextuality supplies the 'magic' for quantum computation". Nature. 510 (7505): 351–355. arXiv: 1401.4174 . Bibcode:2014Natur.510..351H. doi:10.1038/nature13460. PMID   24919152. S2CID   4463585.
  3. Bartlett, Stephen D. (11 June 2014). "Powered by magic". Nature. 510 (7505): 345–347. doi: 10.1038/nature13504 . PMID   24919151.
  4. Knill, E. (2004). "Fault-Tolerant Postselected Quantum Computation: Schemes". arXiv: quant-ph/0402171 . Bibcode:2004quant.ph..2171K.{{cite journal}}: Cite journal requires |journal= (help)
  5. 1 2 3 4 Bravyi, Sergey; Kitaev, Alexei (2005). "Universal quantum computation with ideal Clifford gates and noisy ancillas". Physical Review A . 71 (2): 022316. arXiv: quant-ph/0403025 . Bibcode:2005PhRvA..71b2316B. doi:10.1103/PhysRevA.71.022316. S2CID   17504370.
  6. 1 2 Bravyi, Sergey; Haah, Jeongwan (2012). "Magic state distillation with low overhead". Physical Review A . 86 (5): 052329. arXiv: 1209.2426 . Bibcode:2012PhRvA..86e2329B. doi:10.1103/PhysRevA.86.052329. S2CID   4399674.
  7. Meier, Adam; Eastin, Bryan; Knill, Emanuel (2013). "Magic-state distillation with the four-qubit code". Quantum Information & Computation. 13 (3–4): 195–209. arXiv: 1204.4221 . doi:10.26421/QIC13.3-4-2. S2CID   27799877.
  8. Campbell, Earl T.; Anwar, Hussain; Browne, Dan E. (27 December 2012). "Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes". Physical Review X. 2 (4): 041021. arXiv: 1205.3104 . Bibcode:2012PhRvX...2d1021C. doi: 10.1103/PhysRevX.2.041021 .
  9. Campbell, Earl T. (3 December 2014). "Enhanced Fault-Tolerant Quantum Computing in d -Level Systems". Physical Review Letters. 113 (23): 230501. arXiv: 1406.3055 . Bibcode:2014PhRvL.113w0501C. doi:10.1103/PhysRevLett.113.230501. PMID   25526106. S2CID   24978175.
  10. Prakash, Shiroman (September 2020). "Magic state distillation with the ternary Golay code". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 476 (2241): 20200187. arXiv: 2003.02717 . Bibcode:2020RSPSA.47600187P. doi:10.1098/rspa.2020.0187. PMC   7544352 . PMID   33071576.