Five-qubit error correcting code

Last updated
Quantum circuit that measures stabilizers in the five qubit error correcting code Five qubit code stabilizer measurement circuit.png
Quantum circuit that measures stabilizers in the five qubit error correcting code

The five-qubit error correcting code is the smallest quantum error correcting code that can protect a logical qubit from any arbitrary single qubit error. [1] In this code, 5 physical qubits are used to encode the logical qubit. [2] With and being Pauli matrices and the Identity matrix, this code's generators are . Its logical operators are and . [3] Once the logical qubit is encoded, errors on the physical qubits can be detected via stabilizer measurements. A lookup table that maps the results of the stabilizer measurements to the types and locations of the errors gives the control system of the quantum computer enough information to correct errors. [4]

Contents

Measurements

Z
-
{\displaystyle {\bar {Z}}}
Parity measurement circuit Z1z2z3z4z5 parity measurement circuit.png
Parity measurement circuit

Stabilizer measurements are parity measurements that measure the stabilizers of physical qubits. [5] For example, to measure the first stabilizer (), a parity measurement of of the first qubit, on the second, on the third, on the fourth , and on the fifth is performed. Since there are four stabilizers, 4 ancillas will be used to measure them. The first 4 qubits in the image above are the ancillas. The resulting bits from the ancillas is the syndrome; which encodes the type of error that occurred and its location.

A logical qubit can be measured in the computational basis by performing a parity measurement on . If the measured ancilla is , the logical qubit is . If the measured ancilla is , the logical qubit is . [6]

Error correction

It is possible to compute all the single qubit errors that can occur and how to correct them. This is done by calculating what errors commute with the stabilizers. [4] For example, if there is an error on the first qubit and no errors on the others (), it commutes with the first stabilizer . This means that if an X error occurs on the first qubit, the first ancilla qubit will be 0. The second ancilla qubit: , the third: and the fourth . So if an X error occurs on the first qubit, the syndrome will be ; which is shown in the table below, to the right of . Similar calculations are realized for all other possible errors to fill out the table.

000110101011
100001011101
110000101110
011010011111
001101000111

To correct an error, the same operation is performed on the physical qubit based on its syndrome. If the syndrome is , an gate is applied to the first qubit to reverse the error.

Encoding

The first step in executing error corrected quantum computation is to encode the computer's initial state by transforming the physical qubits into logical codewords. The logical codewords for the five qubit code are

stabilizer measurements followed by a measurement can be used to encode a logical qubit into 5 physical qubits. [7] To prepare , perform stabilizer measurements and apply error correction. After error correction, the logical state is guaranteed to be a logical codeword. If the result of measuring is , the logical state is . If the result is , the logical state is and applying will transform it into .

Related Research Articles

Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements. This would allow algorithms of greater circuit depth.

In quantum computing, a graph state is a special type of multi-qubit state that can be represented by a graph. Each qubit is represented by a vertex of the graph, and there is an edge between every interacting pair of qubits. In particular, they are a convenient way of representing certain types of entangled states.

In quantum computing and quantum communication, a stabilizer code is a class of quantum codes for performing quantum error correction. The toric code, and surface codes more generally, are types of stabilizer codes considered very important for the practical realization of quantum information processing.

The Steane code is a tool in quantum error correction introduced by Andrew Steane in 1996. It is a CSS code (Calderbank-Shor-Steane), using the classical binary [7,4,3] Hamming code to correct for qubit flip errors and the dual of the Hamming code, the [7,3,4] code, to correct for phase flip errors. The Steane code encodes one logical qubit in 7 physical qubits and is able to correct arbitrary single qubit errors.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way or measurement-based quantum computer (MBQC) is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

In the theory of quantum communication, the entanglement-assisted stabilizer formalism is a method for protecting quantum information with the help of entanglement shared between a sender and receiver before they transmit quantum data over a quantum communication channel. It extends the standard stabilizer formalism by including shared entanglement . The advantage of entanglement-assisted stabilizer codes is that the sender can exploit the error-correcting properties of an arbitrary set of Pauli operators. The sender's Pauli operators do not necessarily have to form an Abelian subgroup of the Pauli group over qubits. The sender can make clever use of her shared ebits so that the global stabilizer is Abelian and thus forms a valid quantum error-correcting code.

Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity.

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

In quantum mechanics, the cat state, named after Schrödinger's cat, is a quantum state composed of two diametrically opposed conditions at the same time, such as the possibilities that a cat is alive and dead at the same time.

The KLM scheme or KLM protocol is an implementation of linear optical quantum computing (LOQC), developed in 2000 by Emanuel Knill, Raymond Laflamme, and Gerard J. Milburn. This protocol allows for the creation of universal quantum computers using solely linear optical tools. The KLM protocol uses linear optical elements, single-photon sources, and photon detectors as resources to construct a quantum computation scheme involving only ancilla resources, quantum teleportations, and error corrections.

Optical cluster states are a proposed tool to achieve quantum computational universality in linear optical quantum computing (LOQC). As direct entangling operations with photons often require nonlinear effects, probabilistic generation of entangled resource states has been proposed as an alternative path to the direct approach.

Magic state distillation is a method for creating more accurate quantum states from multiple noisy ones, which is important for building fault tolerant quantum computers. It has also been linked to quantum contextuality, a concept thought to contribute to quantum computers' power.

The Eastin–Knill theorem is a no-go theorem that states: "No quantum error correcting code can have a continuous symmetry which acts transversely on physical qubits". In other words, no quantum error correcting code can transversely implement a universal gate set, where a transversal logical gate is one that can be implemented on a logical qubit by the independent action of separate physical gates on corresponding physical qubits.

In quantum information, the gnu code refers to a particular family of quantum error correcting codes, with the special property of being invariant under permutations of the qubits. Given integers g, n, and m, the two codewords are

Parity measurement is a procedure in quantum information science used for error detection in quantum qubits. A parity measurement checks the equality of two qubits to return a true or false answer, which can be used to determine whether a correction needs to occur. Additional measurements can be made for a system greater than two qubits. Because parity measurement does not measure the state of singular bits but rather gets information about the whole state, it is considered an example of a joint measurement. Joint measurements do not have the consequence of destroying the original state of a qubit as normal quantum measurements do. Mathematically speaking, parity measurements are used to project a state into an eigenstate of an operator and to acquire its eigenvalue.

The Bacon–Shor code is a subsystem error correcting code. In a subsystem code, information is encoded in a subsystem of a Hilbert space. Subsystem codes lend to simplified error correcting procedures unlike codes which encode information in the subspace of a Hilbert space. This simplicity led to the first claim of fault tolerant circuit demonstration on a quantum computer. It is named after Dave Bacon and Peter Shor.

This glossary of quantum computing is a list of definitions of terms and concepts used in quantum computing, its sub-disciplines, and related fields.

Quantum computational chemistry is an emerging field that integrates quantum mechanics with computational methods to simulate chemical systems. Despite quantum mechanics' foundational role in understanding chemical behaviors, traditional computational approaches face significant challenges, largely due to the complexity and computational intensity of quantum mechanical equations. This complexity arises from the exponential growth of a quantum system's wave function with each added particle, making exact simulations on classical computers inefficient.

References

  1. Gottesman, Daniel (2009). "An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation". arXiv: 0904.2557 [quant-ph].
  2. Knill, E.; Laflamme, R.; Martinez, R.; Negrevergne, C. (2001). "Benchmarking Quantum Computers: The Five-Qubit Error Correcting Code". Phys. Rev. Lett. American Physical Society. 86 (25): 5811–5814. arXiv: quant-ph/0101034 . Bibcode:2001PhRvL..86.5811K. doi:10.1103/PhysRevLett.86.5811. PMID   11415364. S2CID   119440555.
  3. D. Gottesman (1997). "Stabilizer Codes and Quantum Error Correction". arXiv: quant-ph/9705052 .
  4. 1 2 Roffe, Joschka (2019). "Quantum error correction: an introductory guide". Contemporary Physics. Taylor & Francis. 60 (3): 226–245. arXiv: 1907.11157 . Bibcode:2019ConPh..60..226R. doi:10.1080/00107514.2019.1667078. S2CID   198893630.
  5. Devitt, Simon J; Munro, William J; Nemoto, Kae (2013). "Quantum error correction for beginners". Reports on Progress in Physics. 76 (7): 076001. arXiv: 0905.2794 . Bibcode:2013RPPh...76g6001D. doi:10.1088/0034-4885/76/7/076001. PMID   23787909. S2CID   206021660.
  6. Ryan-Anderson, C.; Bohnet, J. G.; Lee, K.; Gresh, D.; Hankin, A.; Gaebler, J. P.; Francois, D.; Chernoguzov, A.; Lucchetti, D.; Brown, N. C.; Gatterman, T. M.; Halit, S. K.; Gilmore, K.; Gerber, J.; Neyenhuis, B.; Hayes, D.; Stutz, R. P. (2021). "Realization of real-time fault-tolerant quantum error correction". Physical Review X. 11 (4): 041058. arXiv: 2107.07505 . Bibcode:2021PhRvX..11d1058R. doi:10.1103/PhysRevX.11.041058. S2CID   235899062.
  7. Gong, Ming; Yuan, Xiao; Wang, Shiyu; Wu, Yulin; Zhao, Youwei; Zha, Chen; Li, Shaowei; Zhang, Zhen; Zhao, Qi; Liu, Yunchao; Liang, Futian; Lin, Jin; Xu, Yu; Deng, H.; Rong, Hao; Lu, He; Benjamin, S.; Peng, Cheng-Zhi; Ma, Xiongfeng; Chen, Yu-Ao; Zhu, Xiaobo; Pan, Jian-Wei (2021). "Experimental exploration of five-qubit quantum error correcting code with superconducting qubits". National Science Review. 9 (1): nwab011. arXiv: 1907.04507 . doi:10.1093/nsr/nwab011. PMC   8776549 . PMID   35070323.