Dilution refrigerator

Last updated • 6 min readFrom Wikipedia, The Free Encyclopedia
Phase diagram of liquid He- He mixtures showing the phase separation. Helium phase diagram.svg
Phase diagram of liquid He– He mixtures showing the phase separation.
Schematic diagram of a wet He/ He dilution refrigerator without the outer vacuum shield. (vector graphic) Sketch of helium dilution refrigerator.svg
Schematic diagram of a wet He/ He dilution refrigerator without the outer vacuum shield. (vector graphic)
Schematic diagram of a standard, or wet, dilution refrigerator. Dilution refrigerator01.jpg
Schematic diagram of a standard, or wet, dilution refrigerator.
Schematic diagram of the low-temperature part of a dilution refrigerator. Cold part of dilution refrigerator.jpg
Schematic diagram of the low-temperature part of a dilution refrigerator.
The inside of a wet Oxford Instruments helium dilution refrigerator, with the vacuum cans removed. Helium dilution cryostat.jpg
The inside of a wet Oxford Instruments helium dilution refrigerator, with the vacuum cans removed.
Gas control system for a helium dilution refrigerator. Helium dilution refrigerator.jpg
Gas control system for a helium dilution refrigerator.
Schematic diagram of a cryogen-free, or dry, dilution refrigerator precooled by a two-stage pulse tube refrigerator, indicated by the dotted rectangle. Dilution refrigerator03.jpg
Schematic diagram of a cryogen-free, or dry, dilution refrigerator precooled by a two-stage pulse tube refrigerator, indicated by the dotted rectangle.

A 3He/4He dilution refrigerator is a cryogenic device that provides continuous cooling to temperatures as low as 2  mK, with no moving parts in the low-temperature region. [1] [2] The cooling power is provided by the heat of mixing of the helium-3 and helium-4 isotopes.

Contents

The dilution refrigerator was first proposed by Heinz London in the early 1950s, and was experimentally realized in 1964 in the Kamerlingh Onnes Laboratorium at Leiden University. [3]

Theory of operation

The refrigeration process uses a mixture of two isotopes of helium: helium-3 and helium-4. When cooled below approximately 870 millikelvins, the mixture undergoes spontaneous phase separation to form a 3He-rich phase (the concentrated phase) and a 3He-poor phase (the dilute phase). As shown in the phase diagram, at very low temperatures the concentrated phase is essentially pure 3He, while the dilute phase contains about 6.6% 3He and 93.4% 4He. The working fluid is 3He, which is circulated by vacuum pumps at room temperature.

The 3He enters the cryostat at a pressure of a few hundred millibar. In the classic dilution refrigerator (known as a wet dilution refrigerator), the 3He is precooled and purified by liquid nitrogen at 77 K and a 4He bath at 4.2 K. Next, the 3He enters a vacuum chamber where it is further cooled to a temperature of 1.2–1.5 K by the 1 K bath, a vacuum-pumped 4He bath (as decreasing the pressure of the helium reservoir depresses its boiling point). The 1 K bath liquefies the 3He gas and removes the heat of condensation. The 3He then enters the main impedance, a capillary with a large flow resistance. It is cooled by the still (described below) to a temperature 500–700 mK. Subsequently, the 3He flows through a secondary impedance and one side of a set of counterflow heat exchangers where it is cooled by a cold flow of 3He. Finally, the pure 3He enters the mixing chamber, the coldest area of the device.

In the mixing chamber, two phases of the 3He–4He mixture, the concentrated phase (practically 100% 3He) and the dilute phase (about 6.6% 3He and 93.4% 4He), are in equilibrium and separated by a phase boundary. Inside the chamber, the 3He is diluted as it flows from the concentrated phase through the phase boundary into the dilute phase. The heat necessary for the dilution is the useful cooling power of the refrigerator, as the process of moving the 3He through the phase boundary is endothermic and removes heat from the mixing chamber environment. The 3He then leaves the mixing chamber in the dilute phase. On the dilute side and in the still the 3He flows through superfluid 4He which is at rest. The 3He is driven through the dilute channel by a pressure gradient just like any other viscous fluid. [4] On its way up, the cold, dilute 3He cools the downward flowing concentrated 3He via the heat exchangers and enters the still. The pressure in the still is kept low (about 10 Pa) by the pumps at room temperature. The vapor in the still is practically pure 3He, which has a much higher partial pressure than 4He at 500–700 mK. Heat is supplied to the still to maintain a steady flow of 3He. The pumps compress the 3He to a pressure of a few hundred millibar and feed it back into the cryostat, completing the cycle.

Cryogen-free dilution refrigerators

Modern dilution refrigerators can precool the 3He with a cryocooler in place of liquid nitrogen, liquid helium, and a 1 K bath. [5] No external supply of cryogenic liquids is needed in these "dry cryostats" and operation can be highly automated. However, dry cryostats have high energy requirements and are subject to mechanical vibrations, such as those produced by pulse tube refrigerators. The first experimental machines were built in the 1990s, when (commercial) cryocoolers became available, capable of reaching a temperature lower than that of liquid helium and having sufficient cooling power (on the order of 1 Watt at 4.2 K). [6] Pulse tube coolers are commonly used cryocoolers in dry dilution refrigerators.

Dry dilution refrigerators generally follow one of two designs. One design incorporates an inner vacuum can, which is used to initially precool the machine from room temperature down to the base temperature of the pulse tube cooler (using heat-exchange gas). However, every time the refrigerator is cooled down, a vacuum seal that holds at cryogenic temperatures needs to be made, and low temperature vacuum feed-throughs must be used for the experimental wiring. The other design is more demanding to realize, requiring heat switches that are necessary for precooling, but no inner vacuum can is needed, greatly reducing the complexity of the experimental wiring.

Cooling power

The cooling power (in watts) at the mixing chamber is approximately given by

where is the 3He molar circulation rate, Tm is the mixing-chamber temperature, and Ti the temperature of the 3He entering the mixing chamber. There will only be useful cooling when

This sets a maximum temperature of the last heat exchanger, as above this all cooling power is used up only cooling the incident 3He.

Inside of a mixing chamber there is negligible thermal resistance between the pure and dilute phases, and the cooling power reduces to

A low Tm can only be reached if Ti is low. In dilution refrigerators, Ti is reduced by using heat exchangers as shown in the schematic diagram of the low-temperature region above. However, at very low temperatures this becomes more and more difficult due to the so-called Kapitza resistance. This is a heat resistance at the surface between the helium liquids and the solid body of the heat exchanger. It is inversely proportional to T4 and the heat-exchanging surface area A. In other words: to get the same heat resistance one needs to increase the surface by a factor 10,000 if the temperature reduces by a factor 10. In order to get a low thermal resistance at low temperatures (below about 30 mK), a large surface area is needed. The lower the temperature, the larger the area. In practice, one uses very fine silver powder.

Limitations

There is no fundamental limiting low temperature of dilution refrigerators. Yet the temperature range is limited to about 2 mK for practical reasons. At very low temperatures, both the viscosity and the thermal conductivity of the circulating fluid become larger if the temperature is lowered. To reduce the viscous heating, the diameters of the inlet and outlet tubes of the mixing chamber must go as T−3
m
, and to get low heat flow the lengths of the tubes should go as T−8
m
. That means that, to reduce the temperature by a factor 2, one needs to increase the diameter by a factor of 8 and the length by a factor of 256. Hence the volume should be increased by a factor of 214 = 16,384. In other words: every cm3 at 2 mK would become 16,384 cm3 at 1 mK. The machines would become very big and very expensive. There is a powerful alternative for cooling below 2 mK: nuclear demagnetization.

See also

Related Research Articles

<span class="mw-page-title-main">Cryogenics</span> Study of the production and behaviour of materials at very low temperatures

In physics, cryogenics is the production and behaviour of materials at very low temperatures.

Superfluid helium-4 is the superfluid form of helium-4, an isotope of the element helium. A superfluid is a state of matter in which matter behaves like a fluid with zero viscosity. The substance, which resembles other liquids such as helium I, flows without friction past any surface, which allows it to continue to circulate over obstructions and through pores in containers which hold it, subject only to its own inertia.

The following is a timeline of low-temperature technology and cryogenic technology. It also lists important milestones in thermometry, thermodynamics, statistical physics and calorimetry, that were crucial in development of low temperature systems.

A cryopump or a "cryogenic pump" is a vacuum pump that traps gases and vapours by condensing them on a cold surface, but are only effective on some gases. The effectiveness depends on the freezing and boiling points of the gas relative to the cryopump's temperature. They are sometimes used to block particular contaminants, for example in front of a diffusion pump to trap backstreaming oil, or in front of a McLeod gauge to keep out water. In this function, they are called a cryotrap, waterpump or cold trap, even though the physical mechanism is the same as for a cryopump.

<span class="mw-page-title-main">Magnetic refrigeration</span> Phenomenon in which a suitable material can be cooled by a changing magnetic field

Magnetic refrigeration is a cooling technology based on the magnetocaloric effect. This technique can be used to attain extremely low temperatures, as well as the ranges used in common refrigerators.

<span class="mw-page-title-main">Liquid helium</span> Liquid state of the element helium

Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity.

<span class="mw-page-title-main">Superconducting magnet</span> Electromagnet made from coils of superconducting wire

A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in MRI instruments in hospitals, and in scientific equipment such as NMR spectrometers, mass spectrometers, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan.

Thermoacoustics is the interaction between temperature, density and pressure variations of acoustic waves. Thermoacoustic heat engines can readily be driven using solar energy or waste heat and they can be controlled using proportional control. They can use heat available at low temperatures which makes it ideal for heat recovery and low power applications. The components included in thermoacoustic engines are usually very simple compared to conventional engines. The device can easily be controlled and maintained.

A refrigerator designed to reach cryogenic temperatures is often called a cryocooler. The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have input powers as low as 2–3 W. Large systems, such as those used for cooling the superconducting magnets in particle accelerators are more often called cryogenic refrigerators. Their input powers can be as high as 1 MW. In most cases cryocoolers use a cryogenic fluid as the working substance and employ moving parts to cycle the fluid around a thermodynamic cycle. The fluid is typically compressed at room temperature, precooled in a heat exchanger, then expanded at some low temperature. The returning low-pressure fluid passes through the heat exchanger to precool the high-pressure fluid before entering the compressor intake. The cycle is then repeated.

<span class="mw-page-title-main">Cryostat</span> Cooling device

A cryostat is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various refrigeration methods, most commonly using cryogenic fluid bath such as liquid helium. Hence it is usually assembled into a vessel, similar in construction to a vacuum flask or Dewar. Cryostats have numerous applications within science, engineering, and medicine.

A 1-K pot is a cryogenic device used to attain temperatures down to approximately 1 kelvin.

Helium (2He) has nine known isotopes, but only helium-3 (3He) and helium-4 (4He) are stable. All radioisotopes are short-lived; the longest-lived is 6He with half-life 806.92(24) milliseconds. The least stable is 10He, with half-life 260(40) yoctoseconds, though 2He may have an even shorter half-life.

<span class="mw-page-title-main">Liquefaction of gases</span>

Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders.

Heliox is a cryogenically cooled system produced by Oxford Instruments.

<span class="mw-page-title-main">Pulse tube refrigerator</span> Device using sound waves to reduce heat

The pulse tube refrigerator (PTR) or pulse tube cryocooler is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of thermoacoustics. In contrast with other cryocoolers, this cryocooler can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide variety of applications.

<span class="mw-page-title-main">Vuilleumier cycle</span>

TheVuilleumier cycle was patented by a Swiss-American engineer named Rudolph Vuilleumier in 1918. The purpose of Vuilleumier's machine was to create a heat pump that would use heat at high temperature as energy input. The Vuilleumier cycle...

utilize[s] working gas expansion and compression at three variable volume spaces in order to pump heat from a low to a moderate temperature level. The interesting characteristic of the Vuilleumier machine is that the induced volume variations are realized without the use of work, but thermally. This is the reason why it has a potential to operate at modern applications where the pollution of the environment is not a choice. It is a perfect candidate for such applications, as it consists only of metallic parts and inert gas. Using these units for heating and cooling buildings, large energy savings can be accomplished as they can be operated at small scale in common buildings or at large scale providing heat power to entire building blocks without using fossil fuels. The use of Vuilleumier machines for industrial applications or inside vehicles is also a feasible option. Another field where these machines have already been involved is cryogenics, as they are also able to provide refrigeration at very low temperatures like the very similar and well-known Stirling refrigerators.

<span class="mw-page-title-main">Stefan Janos (physicist)</span>

Stefan Janos is a Slovak-Swiss university physicist and professor, founder of very low temperature physics in Slovakia.

Howard Oldford McMahon (1914–1990) was an American electrical engineer who was Science Director, Vice President, Head of the Research and Development Division, and then President of Arthur D. Little, Inc, of Cambridge, Massachusetts, retiring from the Company in 1977. He was born in Alberta, Canada, and became a naturalized citizen of the United States. He made contributions to the field of cryogenics as inventor during the 1940s through the 1960s, and subsequently as an executive and member of the Board of Directors of both ADL and the Helix Technology Corporation, of Waltham, Massachusetts.

The polarized targets are used as fixed targets in scattering experiments. In high energy physics they are used to study the nucleon spin structure of simple nucleons like protons, neutrons or deuterons. In deep inelastic scattering the hadron structure is probed with electrons, muons or neutrinos. Using a polarized high energy muon beam, for example, on a fixed target with polarized nucleons it is possible to probe the spin dependent part of the structure functions.

<span class="mw-page-title-main">Helium cryogenics</span>

In the field of cryogenics, helium [He] is utilized for a variety of reasons. The combination of helium’s extremely low molecular weight and weak interatomic reactions yield interesting properties when helium is cooled below its critical temperature of 5.2 K to form a liquid. Even at absolute zero (0K), helium does not condense to form a solid under ambient pressure. In this state, the zero point vibrational energies of helium are comparable to very weak interatomic binding interactions, thus preventing lattice formation and giving helium its fluid characteristics. Within this liquid state, helium has two phases referred to as helium I and helium II. Helium I displays thermodynamic and hydrodynamic properties of classical fluids, along with quantum characteristics. However, below its lambda point of 2.17 K, helium transitions to He II and becomes a quantum superfluid with zero viscosity.

References

  1. Lounasmaa, O. V. (1974). Experimental Principles and Methods Below 1 K. London: Academic Press. p. 316. ISBN   978-0-12-455950-9.
  2. Pobell, Frank (2007). Matter and Methods at Low Temperatures. Berlin: Springer-Verlag. p. 461. ISBN   978-3-540-46360-3.
  3. Das, P.; Ouboter, R. B.; Taconis, K. W. (1965). "A Realization of a London-Clarke-Mendoza Type Refrigerator". Low Temperature Physics LT9. p. 1253. doi:10.1007/978-1-4899-6443-4_133. ISBN   978-1-4899-6217-1.
  4. de Waele, A.Th.A.M.; Kuerten, J.G.M. (1991). "Thermodynamics and hydrodynamics of 3He–4He mixtures". In Brewer, D. F. (ed.). Progress in Low Temperature Physics, Volume 13. Elsevier. pp. 167–218. ISBN   978-0-08-087308-4.
  5. de Waele, A. T. A. M. (2011). "Basic Operation of Cryocoolers and Related Thermal Machines". Journal of Low Temperature Physics. 164 (5–6): 179–236. Bibcode:2011JLTP..164..179D. doi: 10.1007/s10909-011-0373-x .
  6. Uhlig, K.; Hehn, W. (1997). "3He/4He Dilution refrigerator precooled by Gifford-McMahon refrigerator". Cryogenics. 37 (5): 279. Bibcode:1997Cryo...37..279U. doi:10.1016/S0011-2275(97)00026-X.