Pulse tube refrigerator

Last updated

The pulse tube refrigerator (PTR) or pulse tube cryocooler is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of thermoacoustics. In contrast with other cryocoolers (e.g. Stirling cryocooler and GM-refrigerators), this cryocooler can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide variety of applications.

Contents

Uses

Pulse tube cryocoolers are used in niche industrial applications such as semiconductor fabrication and superconducting radio-frequency circuits. [1] They are also used in military applications such as for the cooling of infrared sensors. [2]

In research, PTRs are often used as precoolers of dilution refrigerators. They are also being developed for cooling of astronomical detectors where liquid cryogens are typically used, such as the Atacama Cosmology Telescope [3] or the Qubic experiment [4] (an interferometer for cosmology studies). Pulse tubes are particularly useful in space-based telescopes such as the James Webb Space Telescope [5] where it is not possible to replenish the cryogens as they are depleted. It has also been suggested that pulse tubes could be used to liquefy oxygen on Mars. [6]

Principle of operation

Figure 1: Schematic drawing of a Stirling-type single-orifice PTR. From left to right: a compressor, a heat exchanger (X1), a regenerator, a heat exchanger (X2), a tube (often called the pulse tube), a heat exchanger (X3), a flow resistance (orifice), and a buffer volume. The cooling is generated at the low temperature TL. Room temperature is TH. Schematic pulstuberefridgerator.jpg
Figure 1: Schematic drawing of a Stirling-type single-orifice PTR. From left to right: a compressor, a heat exchanger (X1), a regenerator, a heat exchanger (X2), a tube (often called the pulse tube), a heat exchanger (X3), a flow resistance (orifice), and a buffer volume. The cooling is generated at the low temperature TL. Room temperature is TH.

Figure 1 represents the Stirling-type single-orifice pulse-tube refrigerator (PTR), which is filled with a gas, typically helium at a pressure varying from 10 to 30 bar. From left to right the components are:

Figure 2: Left: (near X2): a gas element enters the tube with temperature TL and leaves it with a lower temperature. Right: (near X3): a gas element enters the tube with temperature TH and leaves it with a higher temperature. Carnotcycle.jpg
Figure 2: Left: (near X2): a gas element enters the tube with temperature TL and leaves it with a lower temperature. Right: (near X3): a gas element enters the tube with temperature TH and leaves it with a higher temperature.

The part in between X1 and X3 is thermally insulated from the surroundings, usually by vacuum. The pressure varies gradually and the velocities of the gas are low. So the name "pulse" tube cooler is misleading, since there are no pulses in the system.

The piston moves periodically from left to right and back. As a result, the gas also moves from left to right and back while the pressure within the system increases and decreases. If the gas from the compressor space moves to the right, it enters the regenerator with temperature TH and leaves the regenerator at the cold end with temperature TL, hence heat is transferred into the regenerator material. On its return, the heat stored within the regenerator is transferred back into the gas.

In the tube, the gas is thermally isolated (adiabatic), so the temperature of the gas in the tube varies with the pressure.

At the cold end of the tube, the gas enters the tube via X2 when the pressure is high with temperature TL and returns when the pressure is low with a temperature belowTL, hence taking up heat from X2: this gives the desired cooling effect at X2.

To understand why the low-pressure gas returns at a lower temperature, look at figure 1 and consider gas molecules close to X3 (at the hot end), which move in and out of the tube through the orifice. Molecules flow into the tube (to the left) when the pressure in the tube is low (it is sucked into the tube via X3, coming from the orifice and the buffer). Upon entering the tube, it has the temperature TH. Later in the cycle, the same mass of gas is pushed out from the tube again when the pressure inside the tube is high. As a consequence, its temperature will be higher than TH. In the heat exchanger X3, it releases heat and cools down to the ambient temperature TH. [7]

Figure 3: Coaxial pulse tube with a displacer Coaxial Pulse Tube.jpg
Figure 3: Coaxial pulse tube with a displacer

Figure 3 shows a coaxial pulse tube, which is a more useful configuration in which the regenerator surrounds the central pulse tube. This is compact and places the cold head at an end, so it is easy to integrate with whatever is to be cooled. The displacer can be passively driven, and this recovers work that would otherwise be dissipated in the orifice.

Performance

The performance of the cooler is determined mainly by the quality of the regenerator. It has to satisfy conflicting requirements: it must have a low flow resistance (so it must be short with wide channels), but the heat exchange should also be good (so it must be long with narrow channels). The material must have a large heat capacity. At temperatures above 50 K practically all materials are suitable. Bronze or stainless steel is often used. For temperatures between 10 and 50 K lead is most suitable. Below 10 K one uses magnetic materials which are specially developed for this application.

The so-called coefficient of performance (COP; denoted ) of coolers is defined as the ratio between the cooling power and the compressor power P. In formula: . For a perfectly reversible cooler, is given by Carnot's theorem:

However, a pulse-tube refrigerator is not perfectly reversible due to the presence of the orifice, which has flow resistance. Instead, the COP of an ideal PTR is given by

which is lower than that of ideal coolers.

Comparison with other coolers

In most coolers gas is compressed and expanded periodically. Well-known coolers such as the Stirling engine coolers and the popular Gifford-McMahon coolers have a displacer that ensures that the cooling (due to expansion) takes place in a different region of the machine than the heating (due to compression). Due to its clever design, the PTR does not have such a displacer, making the construction of a PTR simpler, cheaper, and more reliable. Furthermore, there are no mechanical vibrations and no electro-magnetic interferences. The basic operation of cryocoolers and related thermal machines is described by De Waele [8]

History

Figure 4: The temperature of PTRs over the years. The temperature of 1.2 K was reached in a collaboration between the groups of Giessen and Eindhoven. They used a superfluid vortex cooler as an additional cooling stage to the PTR. Ontwikkelingkoeler.jpg
Figure 4: The temperature of PTRs over the years. The temperature of 1.2 K was reached in a collaboration between the groups of Giessen and Eindhoven. They used a superfluid vortex cooler as an additional cooling stage to the PTR.

W. E. Gifford and R. C. Longsworth, in the 1960s, invented the so-called Basic Pulse Tube Refrigerator. [9] [10] [11] [12] The modern PTR was invented in 1984 by Mikulin who introduced an orifice to the basic pulse tube. [13] He reached a temperature of 105 K. Soon after that, PTRs became better due to the invention of new variations. [14] [15] [16] [17] [18] This is shown in figure 4, where the lowest temperature for PTRs is plotted as a function of time.

At the moment, the lowest temperature is below the boiling point of helium (4.2 K). Originally this was considered to be impossible. For some time it looked as if it would be impossible to cool below the lambda point of 4He (2.17 K), but the low-temperature group of the Eindhoven University of Technology managed to cool to a temperature of 1.73 K by replacing the usual 4He as refrigerant by its rare isotope 3He. Later this record was broken by the Giessen Group that managed to get even below 1.3 K. In a collaboration between the groups from Giessen and Eindhoven a temperature of 1.2 K was reached by combining a PTR with a superfluid vortex cooler. [19]

Types

For cooling, the source of the pressure variations is unimportant. PTRs for temperatures below 20 K usually operate at frequencies of 1 to 2 Hz and with pressure variations from 10 to 25 bar. The swept volume of the compressor would be very high (up to one liter and more). Therefore, the compressor is uncoupled from the cooler. A system of valves (usually a rotating valve) alternately connects the high-pressure and the low-pressure side of the compressor to the hot end of the regenerator. As the high-temperature part of this type of PTR is the same as of GM-coolers, this type of PTR is called a GM-type PTR. The gas flows through the valves are accompanied by losses which are absent in the Stirling-type PTR.

PTRs can be classified according to their shape. If the regenerator and the tube are in line (as in fig. 1) we talk about a linear PTR. The disadvantage of the linear PTR is that the cold spot is in the middle of the cooler. For many applications it is preferable that the cooling is produced at the end of the cooler. By bending the PTR we get a U-shaped cooler. Both hot ends can be mounted on the flange of the vacuum chamber at room temperature. This is the most common shape of PTRs. For some applications it is preferable to have a cylindrical geometry. In that case the PTR can be constructed in a coaxial way so that the regenerator becomes a ring-shaped space surrounding the tube.

The lowest temperature reached with single-stage PTRs is just above 10 K. [20] However, one PTR can be used to precool the other. The hot end of the second tube is connected to room temperature and not to the cold end of the first stage. In this clever way it is avoided that the heat, released at the hot end of the second tube, is a load on the first stage. In applications the first stage also operates as a temperature-anchoring platform for e.g. shield cooling of superconducting-magnet cryostats. Matsubara and Gao were the first to cool below 4 K with a three-stage PTR. [21] With two-stage PTRs temperatures of 2.1 K, so just above the λ-point of helium, have been obtained. With a three-stage PTR 1.73 K has been reached using 3He as the working fluid. [22]

Prospects

The coefficient of performance of PTRs at room temperature is low, so it is not likely that they will play a role in domestic cooling. However, below about 80 K the coefficient of performance is comparable with other coolers (compare equations ( 1 ) and ( 2 )) and in the low-temperature region the advantages get the upper hand. PTRs are commercially available for temperatures in the region of 70 K and 4 K. They are applied in infrared detection systems, for reduction of thermal noise in devices based on (high-Tc) superconductivity such as SQUIDs, and filters for telecommunication. PTRs are also suitable for cooling MRI-systems and energy-related systems using superconducting magnets. In so-called dry magnets, coolers are used so that no cryoliquid is needed at all or for the recondensation of the evaporated helium. Also the combination of cryocoolers with 3He-4He dilution refrigerators [23] for the temperature region down to 2 mK is attractive since in this way the whole temperature range from room temperature to 2 mK is easier to access.

For many low temperature experiments, mechanical vibrations caused by PTRs can cause microphonics on measurement lines, which is a big disadvantage of PTRs. Particularly for scanning probe microscopy uses, PTR-based scanning tunneling microscopes (STMs) have historically difficult due to the extreme vibration sensitivity of STM. Use of an exchange gas above the vibration sensitive scanning head enabled the first PTR based low temperature STMs. [24] Now, there are commercially available PTR-based, cryogen free scanning probe systems. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Cryogenics</span> Study of the production and behaviour of materials at very low temperatures

In physics, cryogenics is the production and behaviour of materials at very low temperatures.

<span class="mw-page-title-main">Refrigeration</span> Process of moving heat from one location to another in controlled conditions

Refrigeration is any of various types of cooling of a space, substance, or system to lower and/or maintain its temperature below the ambient one. Refrigeration is an artificial, or human-made, cooling method.

The following is a timeline of low-temperature technology and cryogenic technology. It also lists important milestones in thermometry, thermodynamics, statistical physics and calorimetry, that were crucial in development of low temperature systems.

A cryopump or a "cryogenic pump" is a vacuum pump that traps gases and vapours by condensing them on a cold surface, but are only effective on some gases. The effectiveness depends on the freezing and boiling points of the gas relative to the cryopump's temperature. They are sometimes used to block particular contaminants, for example in front of a diffusion pump to trap backstreaming oil, or in front of a McLeod gauge to keep out water. In this function, they are called a cryotrap, waterpump or cold trap, even though the physical mechanism is the same as for a cryopump.

<span class="mw-page-title-main">Magnetic refrigeration</span> Phenomenon in which a suitable material can be cooled by a changing magnetic field

Magnetic refrigeration is a cooling technology based on the magnetocaloric effect. This technique can be used to attain extremely low temperatures, as well as the ranges used in common refrigerators.

<span class="mw-page-title-main">Dilution refrigerator</span> Cryogenic device for cooling to very low temperatures

A 3He/4He dilution refrigerator is a cryogenic device that provides continuous cooling to temperatures as low as 2 mK, with no moving parts in the low-temperature region. The cooling power is provided by the heat of mixing of the helium-3 and helium-4 isotopes.

<span class="mw-page-title-main">Superconducting magnet</span> Electromagnet made from coils of superconducting wire

A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in MRI instruments in hospitals, and in scientific equipment such as NMR spectrometers, mass spectrometers, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan.

Thermoacoustics is the interaction between temperature, density and pressure variations of acoustic waves. Thermoacoustic heat engines can readily be driven using solar energy or waste heat and they can be controlled using proportional control. They can use heat available at low temperatures which makes it ideal for heat recovery and low power applications. The components included in thermoacoustic engines are usually very simple compared to conventional engines. The device can easily be controlled and maintained.

A refrigerator designed to reach cryogenic temperatures is often called a cryocooler. The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have input powers as low as 2–3 W. Large systems, such as those used for cooling the superconducting magnets in particle accelerators are more often called cryogenic refrigerators. Their input powers can be as high as 1 MW. In most cases cryocoolers use a cryogenic fluid as the working substance and employ moving parts to cycle the fluid around a thermodynamic cycle. The fluid is typically compressed at room temperature, precooled in a heat exchanger, then expanded at some low temperature. The returning low-pressure fluid passes through the heat exchanger to precool the high-pressure fluid before entering the compressor intake. The cycle is then repeated.

<span class="mw-page-title-main">Cryostat</span> Cooling device

A cryostat is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various refrigeration methods, most commonly using cryogenic fluid bath such as liquid helium. Hence it is usually assembled into a vessel, similar in construction to a vacuum flask or Dewar. Cryostats have numerous applications within science, engineering, and medicine.

<span class="mw-page-title-main">Refrigerator</span> Appliance for cold food storage

A refrigerator, commonly fridge, is a commercial and home appliance consisting of a thermally insulated compartment and a heat pump that transfers heat from its inside to its external environment so that its inside is cooled to a temperature below the room temperature. Refrigeration is an essential food storage technique around the world. The low temperature reduces the reproduction rate of bacteria, so the refrigerator lowers the rate of spoilage. A refrigerator maintains a temperature a few degrees above the freezing point of water. The optimal temperature range for perishable food storage is 3 to 5 °C. A freezer is a specialized refrigerator, or portion of a refrigerator, that maintains its contents’ temperature below the freezing point of water. The refrigerator replaced the icebox, which had been a common household appliance for almost a century and a half. The United States Food and Drug Administration recommends that the refrigerator be kept at or below 4 °C (40 °F) and that the freezer be regulated at −18 °C (0 °F).

<span class="mw-page-title-main">Absorption refrigerator</span> Refrigerator that uses a heat source

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of convenient heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) may all use economizers. In simple terms, an economizer is a heat exchanger.

<span class="mw-page-title-main">Heat pump and refrigeration cycle</span> Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that transmits heat from one location at a certain temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. The operating principles in both cases are the same; energy is used to move heat from a colder place to a warmer place.

<span class="mw-page-title-main">Hampson–Linde cycle</span> Chemical process in the liquefaction of gas

The Hampson–Linde cycle is a process for the liquefaction of gases, especially for air separation. William Hampson and Carl von Linde independently filed for patents of the cycle in 1895: Hampson on 23 May 1895 and Linde on 5 June 1895.

<span class="mw-page-title-main">Regenerative cooling</span>

Regenerative cooling is a method of cooling gases in which compressed gas is cooled by allowing it to expand and thereby take heat from the surroundings. The cooled expanded gas then passes through a heat exchanger where it cools the incoming compressed gas.

<span class="mw-page-title-main">Applications of the Stirling engine</span> Practical uses for Sterling engine technology

Applications of the Stirling engine range from mechanical propulsion to heating and cooling to electrical generation systems. A Stirling engine is a heat engine operating by cyclic compression and expansion of air or other gas, the "working fluid", at different temperature levels such that there is a net conversion of heat to mechanical work. The Stirling cycle heat engine can also be driven in reverse, using a mechanical energy input to drive heat transfer in a reversed direction.

<span class="mw-page-title-main">Mid-Infrared Instrument</span> Camera and spectrometer on the James Webb Space Telescope

MIRI, or the Mid-Infrared Instrument, is an instrument on the James Webb Space Telescope. MIRI is a camera and a spectrograph that observes mid to long infrared radiation from 5 to 28 microns. It also has coronagraphs, especially for observing exoplanets. Whereas most of the other instruments on Webb can see from the start of near infrared, or even as short as orange visible light, MIRI can see longer wavelength light.

<span class="mw-page-title-main">Cascade refrigeration</span> Refrigeration process used to achieve temperatures below -100 degrees Celsius without liquid gases

A cascade refrigeration cycle is a multi-stage thermodynamic cycle. An example two-stage process is shown at right. The cascade cycle is often employed for devices such as ULT freezers.

Michael Petach was an American engineer who made contributions in the fields of cryogenics and thermoacoustics in developing systems for space applications. He worked as an engineer for Northrop Grumman. His notable work revolved around developing cryocoolers and the traveling-wave thermoacoustic electric generator, a technology that enhances the efficiency of power generation for spacecraft. He contributed to the development of the cryocooler system for the James Webb Space Telescope's Mid-Infrared Instrument (MIRI) and worked on cryocooler concepts for the Origins Space Telescope.

References

  1. Riabzev, S. V.; Pundak, N.; Leshets, A.; Meromi, A.; Veprik, A. M. (2001). "[No title found]". Journal of Superconductivity: Incorporating Novel Magnetism. 14 (1): 35–39. doi:10.1023/A:1007876004471.
  2. Radebough, Ray (1999). Development of the Pulse Tube Refrigerator as an Efficient and Reliable Cryocooler (PDF). Proceedings of the Institute of Refrigeration (London) 1999–2000. Institute of Refrigeration.
  3. About ACT (official site)
  4. QUBIC Bolometric interferometry: the concept (official site)
  5. The James Webb Space Telescope Cryocooler (JWST/NASA)
  6. Marquardt, E.D.; Radebaugh, Ray (2000). Pulse Tube Oxygen Liquefier (PDF). Proceedings of the Cryogenic Engineering Conference. Advances in Cryogenic Engineering. Vol. 45A. Montreal, Quebec, Canada. pp. 457–464. ISBN   978-0-306-46443-0. Archived from the original (PDF) on 18 November 2017.
  7. David, M.; Maréchal, J.-C.; Simon, Y.; Guilpin, C. (1993). "Theory of ideal orifice pulse tube refrigerator". Cryogenics. 33 (2). Elsevier BV: 154–161. Bibcode:1993Cryo...33..154D. doi:10.1016/0011-2275(93)90129-c. ISSN   0011-2275.
  8. de Waele, A. T. A. M. (10 June 2011). "Basic Operation of Cryocoolers and Related Thermal Machines". Journal of Low Temperature Physics. 164 (5–6). Springer Science and Business Media LLC: 179–236. Bibcode:2011JLTP..164..179D. doi: 10.1007/s10909-011-0373-x . ISSN   0022-2291.
  9. Gifford, W. E.; Longsworth, R. C. (1964). "Pulse Tube Refrigeration Progress" (PDF). Cryogenic Engineering Conference. University of Pennsylvania.
  10. Gifford, W. E.; Longsworth, R. C. (1965). "Surface Heat Pumping". Advances in Cryogenic Engineering. Vol. 11. pp. 171–179. doi:10.1007/978-1-4757-0522-5_18. ISBN   978-1-4757-0524-9.
  11. Longsworth, R. C. (1967). "An Experimental Investigation of Pulse Tube Refrigeration Heat Pumping Rates". Advances in Cryogenic Engineering. Vol. 12. pp. 608–618. doi:10.1007/978-1-4757-0489-1_63. ISBN   978-1-4757-0491-4.
  12. Matsubara, Yoichi (1994). "Pulse Tube Refrigerator". Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers. 11 (2). Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, Volume 11, Issue 2, pp. 89-99: 89–99. Bibcode:2011TRACE..11...89M.
  13. Mikulin, E. I.; Tarasov, A. A.; Shkrebyonock, M. P. (1984). "Low-Temperature Expansion Pulse Tubes". Advances in Cryogenic Engineering. Vol. 29. Boston, MA: Springer US. pp. 629–637. doi:10.1007/978-1-4613-9865-3_72. ISBN   978-1-4613-9867-7.
  14. Zhu, Shaowei; Wu, Peiyi; Chen, Zhongqi (1990). "Double inlet pulse tube refrigerators: an important improvement". Cryogenics. 30 (6). Elsevier BV: 514–520. Bibcode:1990Cryo...30..514S. doi:10.1016/0011-2275(90)90051-d. ISSN   0011-2275.
  15. Matsubara, Y.; Gao, J.L. (1994). "Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K". Cryogenics. 34 (4). Elsevier BV: 259–262. doi:10.1016/0011-2275(94)90104-x. ISSN   0011-2275. S2CID   122086143.
  16. Thummes, G.; Wang, C.; Bender, S.; Heiden, C. (1996). Pulsröhrenkühler zur Erzeugung von Temperaturen im Bereich des flüssigen Heliums [Pulse tube cooler for generating temperatures in the range of liquid helium]. DKV-Tagungsbericht (in German). Vol. 23. pp. 147–159.
  17. Xu, M.Y.; De Waele, A.T.A.M.; Ju, Y.L. (1999). "A pulse tube refrigerator below 2 K". Cryogenics. 39 (10). Elsevier BV: 865–869. Bibcode:1999Cryo...39..865X. doi:10.1016/s0011-2275(99)00101-0. ISSN   0011-2275.
  18. Matsubara, Y. (1998). Classification of pulse tube cryocoolers. Proceedings of the 17th International Cryogenic Engineering Conference. Institute of Physics Publishing. pp. 11–16. ISBN   0-7503-0597-5.
  19. Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A.T.A.M.; Thummes, G. (2004). Superfluid Vortex Cooler. Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference. Unsolved Problems of Noise and Fluctuations. Vol. 49B. AIP. pp. 1906–1913. doi:10.1063/1.1774894. ISSN   0094-243X.
  20. Gan, Z.H.; Dong, W.Q.; Qiu, L.M.; Zhang, X.B.; Sun, H.; He, Y.L.; Radebaugh, R. (2009). "A single-stage GM-type pulse tube cryocooler operating at 10.6K". Cryogenics. 49 (5). Elsevier BV: 198–201. Bibcode:2009Cryo...49..198G. doi:10.1016/j.cryogenics.2009.01.004. ISSN   0011-2275.
  21. Matsubara, Y.; Gao, J.L. (1994). "Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K". Cryogenics. 34 (4). Elsevier BV: 259–262. doi:10.1016/0011-2275(94)90104-x. ISSN   0011-2275. S2CID   122086143.
  22. Xu, M.Y.; De Waele, A.T.A.M.; Ju, Y.L. (1999). "A pulse tube refrigerator below 2 K". Cryogenics. 39 (10). Elsevier BV: 865–869. Bibcode:1999Cryo...39..865X. doi:10.1016/s0011-2275(99)00101-0. ISSN   0011-2275.
  23. Zu, H.; Dai, W.; de Waele, A.T.A.M. (2022). "Development of dilution refrigerators – A review". Cryogenics. 121. doi:10.1016/j.cryogenics.2021.103390. ISSN   0011-2275. S2CID   244005391.
  24. Kasai, Jun; Koyama, Tomoki; Yokota, Munenori; Iwaya, Katsuya (2022-04-01). "Development of a near-5-Kelvin, cryogen-free, pulse-tube refrigerator-based scanning probe microscope". Review of Scientific Instruments. 93 (4): 043711. arXiv: 2204.01195 . Bibcode:2022RScI...93d3711K. doi:10.1063/5.0084888. ISSN   0034-6748. PMID   35489903.
  25. Kasai, Jun; Koyama, Tomoki; Yokota, Munenori; Iwaya, Katsuya (2022). "Development of a near-5-Kelvin, cryogen-free, pulse-tube refrigerator-based scanning probe microscope". Review of Scientific Instruments. 93 (4): 043711. arXiv: 2204.01195 . Bibcode:2022RScI...93d3711K. doi:10.1063/5.0084888. PMID   35489903 . Retrieved 2024-04-03.