Clifford gates

Last updated

In quantum computing and quantum information theory, the Clifford gates are the elements of the Clifford group, a set of mathematical transformations which normalize the n-qubit Pauli group, i.e., map tensor products of Pauli matrices to tensor products of Pauli matrices through conjugation. The notion was introduced by Daniel Gottesman and is named after the mathematician William Kingdon Clifford. [1] Quantum circuits that consist of only Clifford gates can be efficiently simulated with a classical computer due to the Gottesman–Knill theorem.

Contents

The Clifford group is generated by three gates: Hadamard, phase gate S, and CNOT. [2] [3] [4] This set of gates is minimal in the sense that discarding any one gate results in the inability to implement some Clifford operations; removing the Hadamard gate disallows powers of in the unitary matrix representation, removing the phase gate S disallows in the unitary matrix, and removing the CNOT gate reduces the set of implementable operations from to . Since all Pauli matrices can be constructed from the phase and Hadamard gates, each Pauli gate is also trivially an element of the Clifford group.

The gate is equal to the product of and gates. To show that a unitary is a member of the Clifford group, it suffices to show that for all that consist only of the tensor products of and , we have .

Common generating gates

Hadamard gate

The Hadamard gate

is a member of the Clifford group as and .

S gate

The phase gate

is a Clifford gate as and .

CNOT gate

The CNOT gate applies to two qubits. It is a (C)ontrolled NOT gate, where a NOT gate is performed on qubit 2 if and only if qubit 1 is in the 1 state.


Between and there are four options:

CNOT combinations
CNOT CNOT

Building a universal set of quantum gates

The Clifford gates do not form a universal set of quantum gates as some gates outside the Clifford group cannot be arbitrarily approximated with a finite set of operations. An example is the phase shift gate (historically known as the gate):

.

The following shows that the gate does not map the Pauli- gate to another Pauli matrix:

However, the Clifford group, when augmented with the gate, forms a universal quantum gate set for quantum computation. [5] Moreover, exact, optimal circuit implementations of the single-qubit -angle rotations are known. [6] [7]

See also

Related Research Articles

In mechanics and geometry, the 3D rotation group, often denoted O(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. They [quantum logic gates] are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.

In quantum information science, the Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will "collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell's state the two qubits are in initially. Bell's states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for three or more subsystems.

The Clifford group encompasses a set of quantum operations that map the set of n-fold Pauli group products into itself. It is most famously studied for its use in quantum error correction.

<span class="mw-page-title-main">Superdense coding</span> Two-bit quantum communication protocol

In quantum information theory, superdense coding is a quantum communication protocol to communicate a number of classical bits of information by only transmitting a smaller number of qubits, under the assumption of sender and receiver pre-sharing an entangled resource. In its simplest form, the protocol involves two parties, often referred to as Alice and Bob in this context, which share a pair of maximally entangled qubits, and allows Alice to transmit two bits to Bob by sending only one qubit. This protocol was first proposed by Charles H. Bennett and Stephen Wiesner in 1970 and experimentally actualized in 1996 by Klaus Mattle, Harald Weinfurter, Paul G. Kwiat and Anton Zeilinger using entangled photon pairs. Superdense coding can be thought of as the opposite of quantum teleportation, in which one transfers one qubit from Alice to Bob by communicating two classical bits, as long as Alice and Bob have a pre-shared Bell pair.

<span class="mw-page-title-main">Controlled NOT gate</span> Quantum logic gate

In computer science, the controlled NOT gate, controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.

In quantum computing and quantum communication, a stabilizer code is a class of quantum codes for performing quantum error correction. The toric code, and surface codes more generally, are types of stabilizer codes considered very important for the practical realization of quantum information processing.

A complex Hadamard matrix is any complex matrix satisfying two conditions:

In mathematics and physics, in particular quantum information, the term generalized Pauli matrices refers to families of matrices which generalize the properties of the Pauli matrices. Here, a few classes of such matrices are summarized.

The spin qubit quantum computer is a quantum computer based on controlling the spin of charge carriers in semiconductor devices. The first spin qubit quantum computer was first proposed by Daniel Loss and David P. DiVincenzo in 1997, also known as the Loss–DiVincenzo quantum computer. The proposal was to use the intrinsic spin-½ degree of freedom of individual electrons confined in quantum dots as qubits. This should not be confused with other proposals that use the nuclear spin as qubit, like the Kane quantum computer or the nuclear magnetic resonance quantum computer.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way or measurement-based quantum computer (MBQC) is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

In the theory of quantum communication, the entanglement-assisted stabilizer formalism is a method for protecting quantum information with the help of entanglement shared between a sender and receiver before they transmit quantum data over a quantum communication channel. It extends the standard stabilizer formalism by including shared entanglement . The advantage of entanglement-assisted stabilizer codes is that the sender can exploit the error-correcting properties of an arbitrary set of Pauli operators. The sender's Pauli operators do not necessarily have to form an Abelian subgroup of the Pauli group over qubits. The sender can make clever use of her shared ebits so that the global stabilizer is Abelian and thus forms a valid quantum error-correcting code.

Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity.

In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith.

Linear optical quantum computing or linear optics quantum computation (LOQC), also photonic quantum computing (PQC), is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

The KLM scheme or KLM protocol is an implementation of linear optical quantum computing (LOQC), developed in 2000 by Emanuel Knill, Raymond Laflamme, and Gerard J. Milburn. This protocol allows for the creation of universal quantum computers using solely linear optical tools. The KLM protocol uses linear optical elements, single-photon sources, and photon detectors as resources to construct a quantum computation scheme involving only ancilla resources, quantum teleportations, and error corrections.

In quantum computing, Mølmer–Sørensen gate scheme refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999-2000.

Magic state distillation is a method for creating more accurate quantum states from multiple noisy ones, which is important for building fault tolerant quantum computers. It has also been linked to quantum contextuality, a concept thought to contribute to quantum computers' power.

References

  1. Gottesman, Daniel (1998-01-01). "Theory of fault-tolerant quantum computation" (PDF). Physical Review A . 57 (1): 127–137. arXiv: quant-ph/9702029 . Bibcode:1998PhRvA..57..127G. doi:10.1103/physreva.57.127. ISSN   1050-2947. S2CID   8391036.
  2. Nielsen, Michael A.; Chuang, Isaac L. (2010-12-09). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. ISBN   978-1-107-00217-3.
  3. Gottesman, Daniel (1998-01-01). "Theory of fault-tolerant quantum computation". Physical Review A. 57 (1): 127–137. arXiv: quant-ph/9702029 . Bibcode:1998PhRvA..57..127G. doi:10.1103/PhysRevA.57.127. ISSN   1050-2947. S2CID   8391036.
  4. Gottesman, Daniel (1997-05-28). Stabilizer Codes and Quantum Error Correction (PhD thesis). Caltech. arXiv: quant-ph/9705052 . Bibcode:1997PhDT.......232G.
  5. Forest, Simon; Gosset, David; Kliuchnikov, Vadym; McKinnon, David. "Exact Synthesis of Single-Qubit Unitaries Over Clifford-Cyclotomic Gate Sets". Journal of Mathematical Physics .
  6. Ross, Neil J.; Selinger, Peter (2014). "Optimal ancilla-free Clifford+ T approximation of z-rotations". arXiv: 1403.2975 .
  7. Kliuchnikov, Vadym; Maslov, Dmitri; Mosca, Michele (2013). "Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates". Quantum Information and Computation. 13 (7–8): 607–630. arXiv: 1206.5236 . doi:10.26421/QIC13.7-8-4. S2CID   12885769.