Fermi coordinates

Last updated

In the mathematical theory of Riemannian geometry, there are two uses of the term Fermi coordinates. In one use they are local coordinates that are adapted to a geodesic. [1] In a second, more general one, they are local coordinates that are adapted to any world line, even not geodesical. [2]

Take a future-directed timelike curve , being the proper time along in the spacetime . Assume that is the initial point of .

Fermi coordinates adapted to are constructed this way.

Consider an orthonormal basis of with parallel to .

Transport the basis along making use of Fermi-Walker's transport. The basis at each point is still orthonormal with parallel to and is non-rotated (in a precise sense related to the decomposition of Lorentz transformations into pure transformations and rotations) with respect to the initial basis, this is the physical meaning of Fermi-Walker's transport.

Finally construct a coordinate system in an open tube , a neighbourhood of , emitting all spacelike geodesics through with initial tangent vector , for every .

A point has coordinates where is the only vector whose associated geodesic reaches for the value of its parameter and is the only time along for that this geodesic reaching exists.

If itself is a geodesic, then Fermi-Walker's transport becomes the standard parallel transport and Fermi's coordinates become standard Riemannian coordinates adapted to . In this case, using these coordinates in a neighbourhood of , we have , all Christoffel symbols vanish exactly on . This property is not valid for Fermi's coordinates however when is not a geodesic. Such coordinates are called Fermi coordinates and are named after the Italian physicist Enrico Fermi. The above properties are only valid on the geodesic. The Fermi-Coordinates adapted to a null geodesic is provided by Mattias Blau, Denis Frank, and Sebastian Weiss. [3] Notice that, if all Christoffel symbols vanish near , then the manifold is flat near .

See also

Related Research Articles

In geometry, a geodesic is commonly a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line" to a more general setting.

Riemann curvature tensor Tensor field in Riemannian geometry

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In differential geometry, a Riemannian manifold or Riemannian space(M, g) is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p. A common convention is to take g to be smooth, which means that for any smooth coordinate chart (U, x) on M, the n2 functions

In the theory of relativity, four-acceleration is a four-vector that is analogous to classical acceleration. Four-acceleration has applications in areas such as the annihilation of antiprotons, resonance of strange particles and radiation of an accelerated charge.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

Bosonic string theory is the original version of string theory, developed in the late 1960s. It is so called because it only contains bosons in the spectrum.

In Riemannian geometry, a Jacobi field is a vector field along a geodesic in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after Carl Jacobi.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

Mathematics of general relativity Mathematical structures and techniques used in the theory of general relativity

The mathematics of general relativity refers to various mathematical structures and techniques that are used in studying and formulating Albert Einstein's theory of general relativity. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Geodesics in general relativity

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

Newtonian motivations for general relativity

Some of the basic concepts of general relativity can be outlined outside the relativistic domain. In particular, the idea that mass–energy generates curvature in space and that curvature affects the motion of masses can be illustrated in a Newtonian setting. We use circular orbits as our prototype. This has the advantage that we know the kinetics of circular orbits. This allows us to calculate curvature of orbits in space directly and compare the results with dynamical forces.

Fermi–Walker transport is a process in general relativity used to define a coordinate system or reference frame such that all curvature in the frame is due to the presence of mass/energy density and not to arbitrary spin or rotation of the frame.

Theoretical motivation for general relativity

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

In mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to:

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.

This article will use the Einstein summation convention.

Relativistic Lagrangian mechanics Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

References

  1. Manasse, F. K.; Misner, C. W. (1963). "Fermi Normal Coordinates and Some Basic Concepts in Differential Geometry". Journal of Mathematical Physics. 4 (6): 735–745. Bibcode:1963JMP.....4..735M. doi:10.1063/1.1724316.
  2. Marzlin, Karl-Peter (1994). "The physical meaning of Fermi coordinates". General Relativity and Gravitation. 26 (6): 619–636. arXiv: gr-qc/9402010 . Bibcode:1994GReGr..26..619M. doi:10.1007/BF02108003. S2CID   17918026.
  3. Blau, Matthias; Frank, Denis; Weiss, Sebastian (2006). "Fermi coordinates and Penrose limits". Class. Quantum Grav. 23 (11): 3993–4010. arXiv: hep-th/0603109 . Bibcode:2006CQGra..23.3993B. doi:10.1088/0264-9381/23/11/020. S2CID   3109453.