Null result

Last updated

In science, a null result is a result without the expected content: that is, the proposed result is absent. [1] It is an experimental outcome which does not show an otherwise expected effect. This does not imply a result of zero or nothing, simply a result that does not support the hypothesis.

Contents

In statistical hypothesis testing, a null result occurs when an experimental result is not significantly different from what is to be expected under the null hypothesis; its probability (under the null hypothesis) does not exceed the significance level, i.e., the threshold set prior to testing for rejection of the null hypothesis. The significance level varies, but common choices include 0.10, 0.05, and 0.01. [2]

As an example in physics, the results of the Michelson–Morley experiment were of this type, as it did not detect the expected velocity relative to the postulated luminiferous aether. This experiment's famous failed detection, commonly referred to as the null result, contributed to the development of special relativity. The experiment did appear to measure a non-zero "drift", but the value was far too small to account for the theoretically expected results; it is generally thought to be inside the noise level of the experiment. [3]

Publishing bias

Despite similar quality of execution and design, [4] papers with statistically significant results are three times more likely to be published than those with null results. [5] This unduly motivates researchers to manipulate their practices to ensure statistically significant results, such as by data dredging. [6]

Many factors contribute to publication bias. [7] [8] For instance, once a scientific finding is well established, it may become newsworthy to publish reliable papers that fail to reject the null hypothesis. [9] Most commonly, investigators simply decline to submit results, leading to non-response bias. Investigators may also assume they made a mistake, find that the null result fails to support a known finding, lose interest in the topic, or anticipate that others will be uninterested in the null results. [4]

There are several scientific journals dedicated to the publication of negative or null results, including the following:

While it is not exclusively dedicated to publishing negative results, BMC Research Notes also publishes negative results in the form of research or data notes.

See also

Related Research Articles

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Statistical hypothesis test</span> Method of statistical inference

A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently support a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p-value computed from the test statistic. Roughly 100 specialized statistical tests have been defined.

<span class="mw-page-title-main">Michelson–Morley experiment</span> 1887 investigation of the speed of light

The Michelson–Morley experiment was an attempt to measure the motion of the Earth relative to the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves. The experiment was performed between April and July 1887 by American physicists Albert A. Michelson and Edward W. Morley at what is now Case Western Reserve University in Cleveland, Ohio, and published in November of the same year.

In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is statistically significant, by the standards of the study, when . The significance level for a study is chosen before data collection, and is typically set to 5% or much lower—depending on the field of study.

<span class="mw-page-title-main">Randomized controlled trial</span> Form of scientific experiment

A randomized controlled trial is a form of scientific experiment used to control factors not under direct experimental control. Examples of RCTs are clinical trials that compare the effects of drugs, surgical techniques, medical devices, diagnostic procedures, diets or other medical treatments.

<span class="mw-page-title-main">Edward W. Morley</span> 19/20th-century American scientist

Edward Williams Morley was an American scientist known for his precise and accurate measurement of the atomic weight of oxygen, and for the Michelson–Morley experiment.

In scientific research, the null hypothesis is the claim that the effect being studied does not exist. Note that the term "effect" here is not meant to imply a causative relationship.

<span class="mw-page-title-main">Dayton Miller</span>

Dayton Clarence Miller was an American physicist, astronomer, acoustician, and accomplished amateur flautist. An early experimenter of X-rays, Miller was an advocate of aether theory and absolute space and an opponent of Albert Einstein's theory of relativity.

<span class="mw-page-title-main">Kennedy–Thorndike experiment</span> Modified form of the Michelson–Morley experiment, testing special relativity

The Kennedy–Thorndike experiment, first conducted in 1932 by Roy J. Kennedy and Edward M. Thorndike, is a modified form of the Michelson–Morley experimental procedure, testing special relativity. The modification is to make one arm of the classical Michelson–Morley (MM) apparatus shorter than the other one. While the Michelson–Morley experiment showed that the speed of light is independent of the orientation of the apparatus, the Kennedy–Thorndike experiment showed that it is also independent of the velocity of the apparatus in different inertial frames. It also served as a test to indirectly verify time dilation – while the negative result of the Michelson–Morley experiment can be explained by length contraction alone, the negative result of the Kennedy–Thorndike experiment requires time dilation in addition to length contraction to explain why no phase shifts will be detected while the Earth moves around the Sun. The first direct confirmation of time dilation was achieved by the Ives–Stilwell experiment. Combining the results of those three experiments, the complete Lorentz transformation can be derived.

In published academic research, publication bias occurs when the outcome of an experiment or research study biases the decision to publish or otherwise distribute it. Publishing only results that show a significant finding disturbs the balance of findings in favor of positive results. The study of publication bias is an important topic in metascience.

<span class="mw-page-title-main">Robert S. Shankland</span> American physicist and historian

Robert Sherwood Shankland was an American physicist and historian.

The timeline of luminiferous aether or ether as a medium for propagating electromagnetic radiation begins in the 18th century. The aether was assumed to exist for much of the 19th century—until the Michelson–Morley experiment returned its famous null result. Further experiments were in general agreement with Michelson and Morley's result. By the 1920s, most scientists rejected the aether's existence.

Special relativity is a physical theory that plays a fundamental role in the description of all physical phenomena, as long as gravitation is not significant. Many experiments played an important role in its development and justification. The strength of the theory lies in its unique ability to correctly predict to high precision the outcome of an extremely diverse range of experiments. Repeats of many of those experiments are still being conducted with steadily increased precision, with modern experiments focusing on effects such as at the Planck scale and in the neutrino sector. Their results are consistent with the predictions of special relativity. Collections of various tests were given by Jakob Laub, Zhang, Mattingly, Clifford Will, and Roberts/Schleif.

In the 19th century, the theory of the luminiferous aether as the hypothetical medium for the propagation of light waves was widely discussed. The aether hypothesis arose because physicists of that era could not conceive of light waves propagating without a physical medium in which to do so. When experiments failed to detect the hypothesized luminiferous aether, physicists conceived explanations for the experiments' failure which preserved the hypothetical aether's existence.

The Michelson–Gale–Pearson experiment (1925) is a modified version of the Michelson–Morley experiment and the Sagnac-Interferometer. It measured the Sagnac effect due to Earth's rotation, and thus tests the theories of special relativity and luminiferous ether along the rotating frame of Earth.

The Hammar experiment was an experiment designed and conducted by Gustaf Wilhelm Hammar (1935) to test the aether drag hypothesis. Its negative result refuted some specific aether drag models, and confirmed special relativity.

In epidemiology, reporting bias is defined as "selective revealing or suppression of information" by subjects. In artificial intelligence research, the term reporting bias is used to refer to people's tendency to under-report all the information available.

<span class="mw-page-title-main">Fizeau experiment</span> Experiment measuring the speed of light in moving water

The Fizeau experiment was carried out by Hippolyte Fizeau in 1851 to measure the relative speeds of light in moving water. Fizeau used a special interferometer arrangement to measure the effect of movement of a medium upon the speed of light.

<span class="mw-page-title-main">Timeline of special relativity and the speed of light</span>

This timeline describes the major developments, both experimental and theoretical, of:

References

  1. Giunti, C.; et al. (1999). "New ordering principle for the classical statistical analysis of Poisson processes with background". Phys. Rev. D . 59 (5): 053001. arXiv: hep-ph/9808240 . Bibcode:1999PhRvD..59e3001G. doi:10.1103/PhysRevD.59.053001. S2CID   14948954.
  2. Casella, George; Berger, Roger (2002). Statistical Inference (2nd ed.). Duxbury. p. 385. ISBN   0-534-24312-6.
  3. "Role of the Michelson-Morley experiments in making determinations about competing theories". Archived from the original on 2012-11-07. Retrieved 2003-07-17.
  4. 1 2 Easterbrook, P. J.; Berlin, J. A.; Gopalan, R.; Matthews, D. R. (1991). "Publication bias in clinical research". Lancet . 337 (8746): 867–872. doi: 10.1016/0140-6736(91)90201-Y . PMID   1672966. S2CID   36570135.
  5. Dickersin, K.; Chan, S.; Chalmers, T. C.; et al. (1987). "Publication bias and clinical trials". Controlled Clinical Trials . 8 (4): 343–353. doi:10.1016/0197-2456(87)90155-3. PMID   3442991.
  6. Pearce, J; Derrick, B (2019). "Preliminary testing: The devil of statistics?". Reinvention: An International Journal of Undergraduate Research. 12 (2). doi: 10.31273/reinvention.v12i2.339 .
  7. H. Rothstein, A. J. Sutton and M. Borenstein. (2005). Publication bias in meta-analysis: prevention, assessment and adjustments. Wiley. Chichester, England; Hoboken, NJ.
  8. Chopra, Felix; Haaland, Ingar; Roth, Christopher; Stegmann, Andreas (2023). "The Null Result Penalty". The Economic Journal. doi:10.1093/ej/uead060. ISSN   0013-0133.
  9. Luijendijk, HJ; Koolman, X (May 2012). "The incentive to publish negative studies: how beta-blockers and depression got stuck in the publication cycle". J Clin Epidemiol. 65 (5): 488–92. doi:10.1016/j.jclinepi.2011.06.022. PMID   22342262.