Population impact measure

Last updated

Population impact measures (PIMs) are biostatistical measures of risk and benefit used in epidemiological and public health research. They are used to describe the impact of health risks and benefits in a population, to inform health policy. [1] [2] [3]

Contents

Frequently used measures of risk and benefit identified by Jerkel, Katz and Elmore, [4] describe measures of risk difference (attributable risk), rate difference (often expressed as the odds ratio or relative risk), population attributable risk (PAR), and the relative risk reduction, which can be recalculated into a measure of absolute benefit, called the number needed to treat. Population impact measures are an extension of these statistics, as they are measures of absolute risk at the population level, which are calculations of number of people in the population who are at risk to be harmed, or who will benefit from public health interventions.

They are measures of absolute risk and benefit, producing numbers of people who will benefit from an intervention or be at risk from a risk factor within a particular local or national population. [5] [6] [7] [8] [9] [10] They provide local context to previous measures, allowing policy-makers to identify and prioritise the potential benefits of interventions on their own population. [11] [12] They are simple to compute, and contain the elements to which policy-makers would have to pay attention in the commissioning or improvement of services. They may have special relevance for local policy-making. They depend on the ability to obtain and use local data, and by being explicit about the data required may have the added benefit of encouraging the collection of such data.

Measures

To describe the impact of preventive and treatment interventions, the number of events prevented in a population (NEPP) is defined as "the number of events prevented by the intervention in a population over a defined time period". NEPP extends the well-known measure number needed to treat (NNT) beyond the individual patient to the population. To describe the impact of a risk factor on causing ill health and disease the Population Impact Number of Eliminating a Risk factor (PIN  ER  t) is defined as "the potential number of disease events prevented in a population over the next t years by eliminating a risk factor". The PIN  ER  t extends the well-known population attributable risk (PAR) to a particular population and relates it to disease incidence, converting the PAR from a measure of relative to absolute risk.[ citation needed ]

The components for the calculations are as follows: population denominator (size of the population); proportion of the population with the disease; proportion of the population exposed to the risk factor or the incremental proportion of the diseased population eligible for the proposed intervention (the latter requires the actual or estimated proportion who are currently receiving the interventions 'subtracted' from best practice goal from guidelines or targets, adjusted for likely compliance with the intervention); baseline risk – the probability of the outcome of interest in this or similar populations; and relative risk of outcome given exposure to a risk factor or relative risk reduction associated with the intervention.[ citation needed ]

NEPP

The formula for calculating the NEPP is

where

In order to reflect the incremental effect of changing from current to 'best' practice, and to adjust for levels of compliance, the proportion eligible for treatment, Pe, is , where Pt is the proportion currently treated, Pb is the proportion that would be treated if best practice were adopted, and Pc is the proportion of the population who are compliant with the intervention.

[Note: number needed to treat (NNT): 1/(baseline risk x relative risk reduction)]

PIN − ER − t

The formula for calculating the PIN  ER  t is

where

The PAR/F, population attributable risk (or fraction), is calculated for two or multiple strata. The basic formula to compute the PAR for dichotomous variables is

where

This is modified where there are multiple strata to:

Related Research Articles

<span class="mw-page-title-main">Rheumatoid arthritis</span> Type of autoimmune arthritis

Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involved, with the same joints typically involved on both sides of the body. The disease may also affect other parts of the body, including skin, eyes, lungs, heart, nerves and blood. This may result in a low red blood cell count, inflammation around the lungs, and inflammation around the heart. Fever and low energy may also be present. Often, symptoms come on gradually over weeks to months.

<span class="mw-page-title-main">Type 2 diabetes</span> Type of diabetes mellitus with high blood sugar and insulin resistance

Type 2 diabetes (T2D), formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urination, fatigue and unexplained weight loss. Symptoms may also include increased hunger, having a sensation of pins and needles, and sores (wounds) that do not heal. Often symptoms come on slowly. Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations. The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.

Cost-effectiveness analysis (CEA) is a form of economic analysis that compares the relative costs and outcomes (effects) of different courses of action. Cost-effectiveness analysis is distinct from cost–benefit analysis, which assigns a monetary value to the measure of effect. Cost-effectiveness analysis is often used in the field of health services, where it may be inappropriate to monetize health effect. Typically the CEA is expressed in terms of a ratio where the denominator is a gain in health from a measure and the numerator is the cost associated with the health gain. The most commonly used outcome measure is quality-adjusted life years (QALY).

<span class="mw-page-title-main">Cardiovascular disease</span> Class of diseases that involve the heart or blood vessels

Cardiovascular disease (CVD) is any disease involving the heart or blood vessels. CVDs constitute a class of diseases that includes: coronary artery diseases, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, arrhythmia, congenital heart disease, valvular heart disease, carditis, aortic aneurysms, peripheral artery disease, thromboembolic disease, and venous thrombosis.

In epidemiology, a risk factor or determinant is a variable associated with an increased risk of disease or infection.

<span class="mw-page-title-main">Framingham Heart Study</span> Cardiovascular cohort study

The Framingham Heart Study is a long-term, ongoing cardiovascular cohort study of residents of the city of Framingham, Massachusetts. The study began in 1948 with 5,209 adult subjects from Framingham, and is now on its third generation of participants. Prior to the study almost nothing was known about the epidemiology of hypertensive or arteriosclerotic cardiovascular disease. Much of the now-common knowledge concerning heart disease, such as the effects of diet, exercise, and common medications such as aspirin, is based on this longitudinal study. It is a project of the National Heart, Lung, and Blood Institute, in collaboration with Boston University. Various health professionals from the hospitals and universities of Greater Boston staff the project.

<span class="mw-page-title-main">Sedentary lifestyle</span> Type of lifestyle involving little or no physical activity

Sedentary lifestyle is a lifestyle type, in which one is physically inactive and does little or no physical movement and or exercise. A person living a sedentary lifestyle is often sitting or lying down while engaged in an activity like socializing, watching TV, playing video games, reading or using a mobile phone or computer for much of the day. A sedentary lifestyle contributes to poor health quality, diseases as well as many preventable causes of death.

<span class="mw-page-title-main">Relative risk</span> Measure of association used in epidemiology

The relative risk (RR) or risk ratio is the ratio of the probability of an outcome in an exposed group to the probability of an outcome in an unexposed group. Together with risk difference and odds ratio, relative risk measures the association between the exposure and the outcome.

Overdiagnosis is the diagnosis of disease that will never cause symptoms or death during a patient's ordinarily expected lifetime and thus presents no practical threat regardless of being pathologic. Overdiagnosis is a side effect of screening for early forms of disease. Although screening saves lives in some cases, in others it may turn people into patients unnecessarily and may lead to treatments that do no good and perhaps do harm. Given the tremendous variability that is normal in biology, it is inherent that the more one screens, the more incidental findings will generally be found. For a large percentage of them, the most appropriate medical response is to recognize them as something that does not require intervention; but determining which action a particular finding warrants can be very difficult, whether because the differential diagnosis is uncertain or because the risk ratio is uncertain.

In epidemiology, case fatality rate (CFR) – or sometimes more accurately case-fatality risk – is the proportion of people diagnosed with a certain disease, who end up dying of it. Unlike a disease's mortality rate, the CFR does not take into account the time period between disease onset and death. A CFR is generally expressed as a percentage. It represents a measure of disease lethality and may change with different treatments. CFRs are most often used for with discrete, limited-time courses, such as acute infections.

Multimorbidity, also known as multiple long-term conditions (MLTC), means living with two or more chronic illnesses. For example, a person could have diabetes, heart disease and depression at the same time. Multimorbidity can have a significant impact on people's health and wellbeing. It also poses a complex challenge to healthcare systems which are traditionally focused on individual diseases. Multiple long-term conditions can affect people of any age, but they are more common in older age, affecting more than half of people over 65 years old.

<span class="mw-page-title-main">Familial hypercholesterolemia</span> Genetic disorder characterized by high cholesterol levels

Familial hypercholesterolemia (FH) is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein cholesterol, in the blood and early cardiovascular diseases. The most common mutations diminish the number of functional LDL receptors in the liver or produce abnormal LDL receptors that never go to the cell surface to function properly. Since the underlying body biochemistry is slightly different in individuals with FH, their high cholesterol levels are less responsive to the kinds of cholesterol control methods which are usually more effective in people without FH. Nevertheless, treatment is usually effective.

<span class="mw-page-title-main">Vaccine efficacy</span> Reduction of disease among the vaccinated comparing to the unvaccinated

Vaccine efficacy or vaccine effectiveness is the percentage reduction of disease cases in a vaccinated group of people compared to an unvaccinated group. For example, a vaccine efficacy or effectiveness of 80% indicates an 80% decrease in the number of disease cases among a group of vaccinated people compared to a group in which nobody was vaccinated. When a study is carried out using the most favorable, ideal or perfectly controlled conditions, such as those in a clinical trial, the term vaccine efficacy is used. On the other hand, when a study is carried out to show how well a vaccine works when they are used in a bigger, typical population under less-than-perfectly controlled conditions, the term vaccine effectiveness is used.

A public health intervention is any effort or policy that attempts to improve mental and physical health on a population level. Public health interventions may be run by a variety of organizations, including governmental health departments and non-governmental organizations (NGOs). Common types of interventions include screening programs, vaccination, food and water supplementation, and health promotion. Common issues that are the subject of public health interventions include obesity, drug, tobacco, and alcohol use, and the spread of infectious disease, e.g. HIV.

<span class="mw-page-title-main">Attributable fraction among the exposed</span>

In epidemiology, attributable fraction among the exposed (AFe) is the proportion of incidents in the exposed group that are attributable to the risk factor. The term attributable risk percent among the exposed is used if the fraction is expressed as a percentage. It is calculated as , where is the incidence in the exposed group, is the incidence in the unexposed group, and is the relative risk. It is used when an exposure increases the risk, as opposed to reducing it, in which case its symmetrical notion is preventable fraction among the unexposed.

The relative index of inequality (RII) is a regression-based index which summarizes the magnitude of socio-economic status (SES) as a source of inequalities in health. RII is useful because it takes into account the size of the population and the relative disadvantage experienced by different groups. The disease outcome is regressed on the proportion of the population that has a higher position in the hierarchy.

QRISK3 is a prediction algorithm for cardiovascular disease (CVD) that uses traditional risk factors together with body mass index, ethnicity, measures of deprivation, family history, chronic kidney disease, rheumatoid arthritis, atrial fibrillation, diabetes mellitus, and antihypertensive treatment.

<span class="mw-page-title-main">Attributable fraction for the population</span> Epidemiology statistic

In epidemiology, attributable fraction for the population (AFp) is the proportion of incidents in the population that are attributable to the risk factor. The term attributable risk percent for the population is used if the fraction is expressed as a percentage. It is calculated as , where is the incidence in the population, and is the incidence in the unexposed group.

<span class="mw-page-title-main">Exercise medicine</span> Branch of medicine as it relates to Exercise

Exercise medicine is a branch of medicine that deals with physical fitness and the prevention and treatment of injuries and illness with exercise. In some countries, Sport and Exercise Medicine (SEM) is a recognized medical specialty. Exercise medicine is therefore an emerging physician (non-surgical) specialty, but there is also a belief that exercise is treatment of such fundamental benefit that it should be incorporated into all medical specialties. Allied health practitioners also can specialize in exercise such as exercise physiologists, physiotherapists, athletic trainers and podiatrists.

References

  1. Heller, R. F; Dobson, AJ (2000). "Disease impact number and population impact number: population perspectives to measures of risk and benefit". BMJ. 321 (7266): 950–3. doi:10.1136/bmj.321.7266.950. PMC   1118742 . PMID   11030691.
  2. Heller, RF; Edwards, R; McElduff, P (2003). "Implementing guidelines in primary care: can population impact measures help?". BMC Public Health. 3: 7. doi: 10.1186/1471-2458-3-7 . PMC   149228 . PMID   12542840.
  3. Heller, R. F; Buchan, I; Edwards, R; Lyratzopoulos, G; McElduff, P; St Leger, S (2003). "Communicating risks at the population level: application of population impact numbers". BMJ. 327 (7424): 1162–5. doi:10.1136/bmj.327.7424.1162. PMC   261823 . PMID   14615346.
  4. Jekel JF, Katz DL, Elmore JG Epidemiology, biostatistics, and preventive medicine: Chapter 6 Assessment of risk and benefit in epidemiologic studies Elsevier Health Sciences, 2001[ page needed ]
  5. Torun, P.; Heller, R. F.; Verma, A. (2008). "Potential population impact of changes in heroin treatment and smoking prevalence rates: using Population Impact Measures". The European Journal of Public Health. 19 (1): 28–31. doi: 10.1093/eurpub/ckn103 . PMID   19001458.
  6. Heller, Richard F; Gemmell, Islay; Edwards, Richard; Buchan, Iain; Awasthi, Shally; Volmink, James A (2006). "Prioritising between direct observation of therapy and case-finding interventions for tuberculosis: use of population impact measures". BMC Medicine. 4: 35. doi: 10.1186/1741-7015-4-35 . PMC   1764027 . PMID   17181867.
  7. Heller, RF; Gemmell, I; Patterson, L (2006). "Helping to prioritise interventions for depression and schizophrenia: use of Population Impact Measures". Clinical Practice and Epidemiology in Mental Health. 2: 3. doi: 10.1186/1745-0179-2-3 . PMC   1475571 . PMID   16553956.
  8. Gemmell, I; Heller, RF; McElduff, P; Payne, K; Butler, G; Edwards, R; Roland, M; Durrington, P (2005). "Population impact of stricter adherence to recommendations for pharmacological and lifestyle interventions over one year in patients with coronary heart disease". Journal of Epidemiology and Community Health. 59 (12): 1041–6. doi:10.1136/jech.2005.035717. PMC   1732977 . PMID   16286491.
  9. Gemmell, I; Heller, RF; Payne, K; Edwards, R; Roland, M; Durrington, P (2006). "Potential population impact of the UK government strategy for reducing the burden of coronary heart disease in England: comparing primary and secondary prevention strategies". Quality & Safety in Health Care. 15 (5): 339–43. doi:10.1136/qshc.2005.017061. PMC   2565818 . PMID   17074870.
  10. Syed AM, Talbot-Smith A, Gemmell I. The use of epidemiological measures to estimate the impact of primary prevention interventions on CHD, stroke and cancer outcomes: experiences from Herefordshire, UK. J Epidemiol Glob Health. 2012 Sep;2(3):111-24.
  11. Chamnan, P; Simmons, RK; Khaw, KT; Wareham, NJ; Griffin, SJ (2010). "Estimating the population impact of screening strategies for identifying and treating people at high risk of cardiovascular disease: modelling study". BMJ. 340: c1693. doi:10.1136/bmj.c1693. PMC   2859321 . PMID   20418545.
  12. Heller, RF; Gemmell, I; Wilson, EC; Fordham, R; Smith, RD (2006). "Using economic analyses for local priority setting : the population cost-impact approach". Applied Health Economics and Health Policy. 5 (1): 45–54. doi:10.2165/00148365-200605010-00006. PMID   16774292.