Conformal cyclic cosmology

Last updated

Conformal cyclic cosmology (CCC) is a cosmological model in the framework of general relativity and proposed by theoretical physicist Roger Penrose. [1] [2] [3] In CCC, the universe iterates through infinite cycles, with the future timelike infinity (i.e. the latest end of any possible timescale evaluated for any point in space) of each previous iteration being identified with the Big Bang singularity of the next. [4] Penrose popularized this theory in his 2010 book Cycles of Time: An Extraordinary New View of the Universe.

Contents

Basic construction

Penrose's basic construction [2] is to connect a countable sequence of open Friedmann–Lemaître–Robertson–Walker metric (FLRW) spacetimes, each representing a Big Bang followed by an infinite future expansion. Penrose noticed that the past conformal boundary of one copy of FLRW spacetime can be "attached" to the future conformal boundary of another, after an appropriate conformal rescaling. In particular, each individual FLRW metric is multiplied by the square of a conformal factor that approaches zero at timelike infinity, effectively "squashing down" the future conformal boundary to a conformally regular hypersurface (which is spacelike if there is a positive cosmological constant, as is currently believed). The result is a new solution to Einstein's equations, which Penrose takes to represent the entire universe, and which is composed of a sequence of sectors that Penrose calls "aeons". [5]

The conformal cyclic cosmology hypothesis requires that all massive particles eventually vanish from existence, including those which become too widely separated from all other particles to annihilate with them. As Penrose points out, proton decay is a possibility contemplated in various speculative extensions of the Standard Model, but it has never been observed. Moreover, all electrons must also decay, or lose their charge and/or mass, and no conventional speculations allow for this. [2]

In his Nobel Prize Lecture video, Roger Penrose moderated his previous requirement for no mass, beginning at 26:30 in the video, allowing some mass particles to be present as long as the amounts are insignificant with nearly all of their energy being kinetic, and in a conformal geometry dominated by photons. [6]

Physical implications

The significant feature of this construction for particle physics is that, since bosons obey the laws of conformally invariant quantum theory, they will behave in the same way in the rescaled aeons as in their former FLRW counterparts (classically, this corresponds to light-cone structures being preserved under conformal rescaling). For such particles, the boundary between aeons is not a boundary at all, but just a spacelike surface that can be passed across like any other. Fermions, on the other hand, remain confined to a given aeon, thus providing a convenient solution to the black hole information paradox; according to Penrose, fermions must be irreversibly converted into radiation during black hole evaporation, to preserve the smoothness of the boundary between aeons.

The curvature properties of Penrose's cosmology are also convenient for other aspects of cosmology. First, the boundary between aeons satisfies the Weyl curvature hypothesis, thus providing a certain kind of low-entropy past as required by the past hypothesis, statistical mechanics and observation. Second, Penrose has calculated that a certain amount of gravitational radiation should be preserved across the boundary between aeons. Penrose suggests this extra gravitational radiation may be enough to explain the observed cosmic acceleration without appeal to a dark energy field.

Empirical tests

In 2010, Penrose and Vahe Gurzadyan published a preprint of a paper claiming that observations of the cosmic microwave background (CMB) made by the Wilkinson Microwave Anisotropy Probe (WMAP) and the BOOMERanG experiment contained an excess of concentric circles compared to simulations based on the standard Lambda-CDM model of cosmology, quoting a 6-sigma significance of the result. [5] However, the statistical significance of the claimed detection has since been disputed. Three groups have independently attempted to reproduce these results, but found that the detection of the concentric anomalies was not statistically significant, in that no more concentric circles appeared in the data than in Lambda-CDM simulations. [7] [8] [9] [10]

The reason for the disagreement was tracked down to an issue of how to construct the simulations that are used to determine the significance: The three independent attempts to repeat the analysis all used simulations based on the standard Lambda-CDM model, while Penrose and Gurzadyan used an undocumented non-standard approach. [11]

In 2013 Gurzadyan and Penrose published the further development of their work introducing a new method they termed the "sky-twist procedure" (not based on simulations) in which WMAP data is directly analysed; [3] in 2015, they published the results of Planck data analysis confirming those of WMAP, including the inhomogeneous sky distribution of those structures. [12]

In a paper published on August 6, 2018, authors Daniel An, Krzysztof Antoni Meissner, Pawel Nurowski, and Penrose presented a continued analysis of the CMB data as it seemed to them that “…anomalous points provide an important new input to cosmology, irrespective of the validity of CCC.” They also suggested that those anomalies could be "Hawking points", remnant signals from the "Hawking evaporation of supermassive black holes in the aeon prior to ours". The original version of their paper claimed that a B-mode location found by the BICEP2 team was located at one of these Hawking points; this claim was removed in a later update. [13] A 2020 analysis found that the ostensibly anomalous "Hawking points" were actually consistent with the standard inflationary picture once the look-elsewhere effect is taken into account, therefore arguing that they could not be used as evidence for CCC. [14] In 2022, another group published [15] a preprint on CMB anomalies, consisting of a single or a few bright pixels, erroneously lead to regions with many low-variance circles when applying the search criteria used in previous works. After removing the anomalies from the data, the authors claim no statistically significant low-variance circles results. Concerning Hawking points, they also state no statistically significant evidence when using a Gaussian temperature amplitude model over 1 degree opening angle and after accounting for CMB anomalies. The group comments that CMB anomalies themselves might be remnants of Hawking points is not supported by low-variance and/or high-temperature circles around them. Most important, the authors say that the absence of such distinct features in the CMB does not disprove CCC because if the density of such circles and Hawking points is large, then an interference speckle pattern in the CMB might arise instead. They also note that the statistical distribution of the data is non-gaussian, indicating there is underlying information yet to be fully described.

CCC and the Fermi paradox

In 2015, Gurzadyan and Penrose also discussed the Fermi paradox, the apparent contradiction between the lack of evidence but high probability estimates for the existence of extraterrestrial civilizations. Within conformal cyclic cosmology, the cosmic microwave background provides the possibility of information transfer from one aeon to another, including of intelligent signals within the information panspermia concept. [12]

See also

Related Research Articles

The word aeon, also spelled eon, originally meant "life", "vital force" or "being", "generation" or "a period of time", though it tended to be translated as "age" in the sense of "ages", "forever", "timeless" or "for eternity". It is a Latin transliteration from the ancient Greek word ὁ αἰών, from the archaic αἰϝών meaning "century". In Greek, it literally refers to the timespan of one hundred years. A cognate Latin word aevum or aeuum for "age" is present in words such as longevity and mediaeval.

<span class="mw-page-title-main">Big Bang</span> Physical theory describing the expansion of the universe

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. It was first proposed in 1931 by Roman Catholic priest and physicist Georges Lemaître when he suggested the universe emerged from a "primeval atom". Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang.

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch is believed to have lasted from 10−36 seconds to between 10−33 and 10−32 seconds after the Big Bang. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old.

<span class="mw-page-title-main">Cosmic microwave background</span> Trace radiation from the early universe

The cosmic microwave background is microwave radiation that fills all space in the observable universe. It is a remnant that provides an important source of data on the primordial universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.

<span class="mw-page-title-main">Roger Penrose</span> British mathematical physicist (born 1931)

Sir Roger Penrose is a British mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London.

In physical cosmology, the shape of the universe refers to both its local and global geometry. Local geometry is defined primarily by its curvature, while the global geometry is characterised by its topology. General relativity explains how spatial curvature is constrained by gravity. The global topology of the universe cannot be deduced from measurements of curvature inferred from observations within the family of homogeneous general relativistic models alone, due to the existence of locally indistinguishable spaces with varying global topological characteristics. For example; a multiply connected space like a 3 torus has everywhere zero curvature but is finite in extent, whereas a flat simply connected space is infinite in extent.

The ekpyrotic universe is a cosmological model of the early universe that explains the origin of the large-scale structure of the cosmos. The model has also been incorporated in the cyclic universe theory, which proposes a complete cosmological history, both the past and future.

<span class="mw-page-title-main">Wilkinson Microwave Anisotropy Probe</span> NASA satellite of the Explorer program

The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe, was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang. Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on 30 June 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency (ESA) in 2009.

<span class="mw-page-title-main">Big Crunch</span> Theoretical scenario for the ultimate fate of the universe

The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that a Big Chill is more likely. However, some physicists have proposed that a "Big Crunch-style" event could result from a dark energy fluctuation.

The particle horizon is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, but rather the speed of light times the conformal time. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.

The Big Bounce hypothesis is a cosmological model for the origin of the known universe. It was originally suggested as a phase of the cyclic model or oscillatory universe interpretation of the Big Bang, where the first cosmological event was the result of the collapse of a previous universe. It receded from serious consideration in the early 1980s after inflation theory emerged as a solution to the horizon problem, which had arisen from advances in observations revealing the large-scale structure of the universe.

A cyclic model is any of several cosmological models in which the universe follows infinite, or indefinite, self-sustaining cycles. For example, the oscillating universe theory briefly considered by Albert Einstein in 1930 theorized a universe following an eternal series of oscillations, each beginning with a Big Bang and ending with a Big Crunch; in the interim, the universe would expand for a period of time before the gravitational attraction of matter causes it to collapse back in and undergo a bounce.

<span class="mw-page-title-main">Black hole information paradox</span> Mystery of disappearance of information in a black hole

The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation. He also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and depend only on its mass, electric charge and angular momentum.

<span class="mw-page-title-main">CMB cold spot</span> Region in space

The CMB Cold Spot or WMAP Cold Spot is a region of the sky seen in microwaves that has been found to be unusually large and cold relative to the expected properties of the cosmic microwave background radiation (CMBR). The "Cold Spot" is approximately 70 μK (0.00007 K) colder than the average CMB temperature, whereas the root mean square of typical temperature variations is only 18 μK. At some points, the "cold spot" is 140 μK colder than the average CMB temperature.

<i>Cycles of Time</i> Book by Roger Penrose

Cycles of Time: An Extraordinary New View of the Universe is a science book by mathematical physicist Roger Penrose published by The Bodley Head in 2010. The book outlines Penrose's Conformal Cyclic Cosmology (CCC) model, which is an extension of general relativity but opposed to the widely supported multidimensional string theories and cosmological inflation following the Big Bang.

<span class="mw-page-title-main">Vahe Gurzadyan</span> Armenian physicist (born 1955)

Vahagn "Vahe" Gurzadyan is an Armenian mathematical physicist and a professor and head of Cosmology Center at Yerevan Physics Institute, Yerevan, Armenia, best known for co-writing "Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity" paper with his colleague, Roger Penrose, and collaborating on Roger Penrose's recent book Cycles of Time.

The "axis of evil" is a name given to the apparent correlation between the plane of the Solar System and aspects of the cosmic microwave background (CMB). It gives the plane of the Solar System and hence the location of Earth a greater significance than might be expected by chance – a result which has been claimed to be evidence of a departure from the Copernican principle as assumed in the concordance model.

Information panspermia is the concept of life forms travelling across the universe by means of transmission of compressed information representing said life forms e.g. via genome coding, which can then enable the recovery of intelligent life.

In cosmology, Gurzadyan theorem, proved by Vahe Gurzadyan, states the most general functional form for the force satisfying the condition of identity of the gravity of the sphere and of a point mass located in the sphere's center. This theorem thus refers to the first statement of Isaac Newton’s shell theorem but not the second one, namely, the absence of gravitational force inside a shell.

References

  1. Palmer, Jason (2010-11-27). "Cosmos may show echoes of events before Big Bang". BBC News . Retrieved 2010-11-27.
  2. 1 2 3 Roger Penrose (2006). "Before the Big Bang: An Outrageous New Perspective and its Implications for Particle Physics" (PDF). Proceedings of the EPAC 2006, Edinburgh, Scotland: 2759–2762. Bibcode:2006epac.conf.2759R.
  3. 1 2 Gurzadyan, VG; Penrose, R (2013). "On CCC-predicted concentric low-variance circles in the CMB sky". Eur. Phys. J. Plus. 128 (2): 22. arXiv: 1302.5162 . Bibcode:2013EPJP..128...22G. doi:10.1140/epjp/i2013-13022-4. S2CID   55249027.
  4. Cartlidge, Edwin (2010-11-19). "Penrose claims to have glimpsed universe before Big Bang". physicsworld.com. Archived from the original on 2013-05-30. Retrieved 2010-11-27.
  5. 1 2 Gurzadyan VG; Penrose R (2010-11-16). "Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity". arXiv: 1011.3706 [astro-ph.CO].
  6. Penrose, Roger. "Nobel Lecture: Roger Penrose, Nobel Prize in Physics 2020". YouTube. Nobel Prize Committee. Retrieved 22 May 2021.
  7. Wehus IK; Eriksen HK (2010-12-07). "A search for concentric circles in the 7-year WMAP temperature sky maps". The Astrophysical Journal. 733 (2): L29. arXiv: 1012.1268 . Bibcode:2011ApJ...733L..29W. doi:10.1088/2041-8205/733/2/L29. S2CID   119284906.
  8. Moss A; Scott D; Zibin JP (2010-12-07). "No evidence for anomalously low variance circles on the sky". Journal of Cosmology and Astroparticle Physics. 2011 (4): 033. arXiv: 1012.1305 . Bibcode:2011JCAP...04..033M. doi:10.1088/1475-7516/2011/04/033. S2CID   118433733.
  9. Hajian A (2010-12-08). "Are There Echoes From The Pre-Big Bang Universe? A Search for Low Variance Circles in the CMB Sky". The Astrophysical Journal. 740 (2): 52. arXiv: 1012.1656 . Bibcode:2011ApJ...740...52H. doi:10.1088/0004-637X/740/2/52. S2CID   118515562.
  10. DeAbreu, A.; et al. (2015). "Searching for concentric low variance circles in the cosmic microwave background". Journal of Cosmology and Astroparticle Physics. 2015 (12): 031. arXiv: 1508.05158 . Bibcode:2015JCAP...12..031D. doi:10.1088/1475-7516/2015/12/031. S2CID   119205759.
  11. Gurzadyan VG; Penrose R (2010-12-07). "More on the low variance circles in CMB sky". arXiv: 1012.1486 [astro-ph.CO].
  12. 1 2 Gurzadyan, V.G.; Penrose, R. (2016). "CCC and the Fermi paradox". Eur. Phys. J. Plus. 131: 11. arXiv: 1512.00554 . Bibcode:2016EPJP..131...11G. doi:10.1140/epjp/i2016-16011-1. S2CID   73537479.
  13. Gurzadyan, V. G.; Penrose, R. (2018). "Apparent evidence for Hawking points in the CMB Sky". arXiv: 1808.01740 [astro-ph.CO].
  14. Jow, Dylan L.; Scott, Douglas (2020-03-09). "Re-evaluating evidence for Hawking points in the CMB". Journal of Cosmology and Astroparticle Physics. 2020 (3): 021. arXiv: 1909.09672 . Bibcode:2020JCAP...03..021J. doi:10.1088/1475-7516/2020/03/021. ISSN   1475-7516. S2CID   202719103.
  15. Bodnia, Eve; Isenbaev, Vlad; Colburn, Kellan; Swearngin, Joe; Bouwmeester, Dirk (2022). "Conformal Cyclic Cosmology Signatures and Anomalies of the CMB Sky". arXiv: 2208.06021 [astro-ph.CO].