Information panspermia is the concept of life forms travelling across the universe by means of transmission of compressed information representing said life forms e.g. via genome coding, which can then enable the recovery of intelligent life.
The concept was invented and coined by Vahe Gurzadyan, [1] and then listed by Stephen Webb as Solution 23 to the Fermi paradox: "The Armenian mathematical physicist Vahe Gurzadyan has posited an interesting hypothesis: we might inhabit a Galaxy 'full of traveling life streams' – strings of bits beamed throughout space." [2]
Kolmogorov complexity is defined as the length of the computer program which enables the complete recovery of an object. Gurzadyan showed that the complexity of the human genome is relatively low due to non-random parts in the genomic sequences. Moreover, he noticed that since the genomic information on the terrestrial life, starting from bacteria up to humans, contains essential common parts, the entire terrestrial life information can be compressed and transmitted, as he estimated, to over Galactic distances via Arecibo-type antenna. Von Neumann automata networks or some other mechanism can perform the decoding of the information package. Within this concept, one can even assume that terrestrial life itself might be a result of such an information package.
Information panspermia has been discussed by Gurzadyan and Roger Penrose [3] within the scheme of Conformal Cyclic Cosmology, i.e. the possibility of transmission of information from pre-Big Bang aeon to ours via the cosmic microwave background radiation. [4] [5]
This concept assumes a different strategy of the study of the cosmic signals based on universal compressing and decoding principles. [6] Information panspermia is discussed in: [7]
"Gurzadyan’s idea offers a straightforward practical consequence: we should study alleged SETI signals from the point of view of the algorithmic information theory and we should try to identify and decode possible bit strings hidden in the noise."
In algorithmic information theory, the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program that produces the object as output. It is a measure of the computational resources needed to specify the object, and is also known as algorithmic complexity, Solomonoff–Kolmogorov–Chaitin complexity, program-size complexity, descriptive complexity, or algorithmic entropy. It is named after Andrey Kolmogorov, who first published on the subject in 1963 and is a generalization of classical information theory.
The Fermi paradox is the discrepancy between the lack of conclusive evidence of advanced extraterrestrial life and the apparently high likelihood of its existence. As a 2015 article put it, "If life is so easy, someone from somewhere must have come calling by now."
Hawking radiation is the theoretical thermal black-body radiation released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the event horizon, it cannot escape. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability.
The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that the universe is far more likely to end in heat death. However, there are new theories that suggest that a "Big Crunch-style" event could happen by the way of a Dark energy fluctuation, however this is still being debated amongst scientists.
Michael H. Hart, is an American astrophysicist, author, researcher, and white separatist/white nationalist. Since 1978, he has published five books, most notably of the best-selling work, The 100: A Ranking of the Most Influential Persons in History.
The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing — not even light — can escape. In the 1970s, Stephen Hawking applied the semi-classical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation called Hawking radiation. Hawking also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and would depend only on its mass, electric charge and angular momentum.
The Great Filter is the idea that in the development of life from the earliest stages of abiogenesis to reaching the highest levels of development on the Kardashev scale, there is a barrier to development that makes detectable extraterrestrial life exceedingly rare. The Great Filter is one possible resolution of the Fermi paradox.
The limits of computation are governed by a number of different factors. In particular, there are several physical and practical limits to the amount of computation or data storage that can be performed with a given amount of mass, volume, or energy.
LARES is a passive satellite system of the Italian Space Agency.
The planetarium hypothesis, conceived in 2001 by Stephen Baxter, attempts to provide a solution to the Fermi paradox by holding that our astronomical observations represent an illusion, created by a Type III civilization capable of manipulating matter and energy on galactic scales. He postulates that we do not see evidence of extraterrestrial life because the universe has been engineered so that it appears empty of other life.
Nikodem Janusz Popławski is a Polish theoretical physicist, most widely noted for the hypothesis that every black hole could be a doorway to another universe and that the universe was formed within a black hole which itself exists in a larger universe. This hypothesis was listed by National Geographic and Science magazines among their top ten discoveries of 2010.
Conformal cyclic cosmology (CCC) is a cosmological model in the framework of general relativity and proposed by theoretical physicist Roger Penrose. In CCC, the universe iterates through infinite cycles, with the future timelike infinity of each previous iteration being identified with the Big Bang singularity of the next. Penrose popularized this theory in his 2010 book Cycles of Time: An Extraordinary New View of the Universe.
Cycles of Time: An Extraordinary New View of the Universe is a science book by mathematical physicist Roger Penrose published by The Bodley Head in 2010. The book outlines Penrose's Conformal Cyclic Cosmology (CCC) model, which is an extension of general relativity but opposed to the widely supported multidimensional string theories and cosmological inflation following the Big Bang.
Vahagn "Vahe" Gurzadyan is an Armenian mathematical physicist and a professor and head of Cosmology Center at Yerevan Physics Institute, Yerevan, Armenia, best known for co-writing "Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity" paper with his colleague, Roger Penrose, and collaborating on Roger Penrose's recent book Cycles of Time.
Directed panspermia is the deliberate transport of microorganisms into space to be used as introduced species on other astronomical objects.
In astrobiology and planetary astrophysics, the galactic habitable zone is the region of a galaxy in which life might most likely develop. The concept of a galactic habitable zone analyzes various factors, such as metallicity and the rate and density of major catastrophes such as supernovae, and uses these to calculate which regions of a galaxy are more likely to form terrestrial planets, initially develop simple life, and provide a suitable environment for this life to evolve and advance. According to research published in August 2015, very large galaxies may favor the birth and development of habitable planets more than smaller galaxies such as the Milky Way. In the case of the Milky Way, its galactic habitable zone is commonly believed to be an annulus with an outer radius of about 10 kiloparsecs (33,000 ly) and an inner radius close to the Galactic Center.
The aestivation hypothesis is a hypothesized solution to the Fermi paradox conceived in 2017 by Anders Sandberg, Stuart Armstrong and Milan M. Ćirković. The hypothesis, published on 27 April 2017, suggests advanced alien civilizations may be storing energy and aestivating, until the universe cools to better make use of the stored energy to perform tasks.
In cosmology, Gurzadyan-Savvidy (GS) relaxation is a theory developed by Vahe Gurzadyan and George Savvidy to explain the relaxation over time of the dynamics of N-body gravitating systems such as star clusters and galaxies. Stellar systems observed in the Universe – globular clusters and elliptical galaxies – reveal their relaxed state reflected in the high degree of regularity of some of their physical characteristics such as surface luminosity, velocity dispersion, geometric shapes, etc. The basic mechanism of relaxation of stellar systems has been considered the 2-body encounters, to lead to the observed fine-grained equilibrium. The coarse-grained phase of evolution of gravitating systems is described by violent relaxation developed by Donald Lynden-Bell. The 2-body mechanism of relaxation is known in plasma physics. The difficulties with description of collective effects in N-body gravitating systems arise due to the long-range character of gravitational interaction, as distinct of plasma where due to two different signs of charges the Debye screening takes place. The 2-body relaxation mechanism e.g. for elliptical galaxies predicts around years i.e. time scales exceeding the age of the Universe. The problem of relaxation and evolution of stellar systems and the role of collective effects are studied by various techniques, see. Among the efficient methods of study of N-body gravitating systems are the numerical simulations, particularly, Sverre Aarseth's N-body codes are widely used.
The Hart–Tipler conjecture is the idea that an absence of detectable Von Neumann probes is contrapositive evidence that no intelligent life exists outside of the Solar System. This idea was first proposed in opposition to the Drake equation in a 1975 paper by Michael H. Hart titled "Explanation for the Absence of Extraterrestrials on Earth". The conjecture is the first of many proposed solutions to the Fermi paradox. In this case, the solution is that there is no other intelligent life because such estimates are incorrect. The conjecture is named after astrophysicist Michael H. Hart and mathematical physicist and cosmologist Frank Tipler.
In cosmology, Gurzadyan theorem, proved by Vahe Gurzadyan, states the most general functional form for the force satisfying the condition of identity of the gravity of the sphere and of a point mass located in the sphere's center. This theorem thus refers to the first statement of Isaac Newton’s shell theorem but not the second one, namely, the absence of gravitational force inside a shell.