Orchestrated objective reduction

Last updated
Roger Penrose 9671.JPG
Stuart Hameroff TASC2008.JPG
The founders of the theory: Roger Penrose and Stuart Hameroff, respectively

Orchestrated objective reduction (Orch OR) is a theory which postulates that consciousness originates at the quantum level inside neurons, rather than the view that it is a product of connections between neurons. The mechanism is held to be a quantum process called objective reduction that is orchestrated by cellular structures called microtubules. It is proposed that the theory may answer the hard problem of consciousness and provide a mechanism for free will. [1] The hypothesis was first put forward in the early 1990s by Nobel laureate for physics, Roger Penrose, and anaesthesiologist Stuart Hameroff. The hypothesis combines approaches from molecular biology, neuroscience, pharmacology, philosophy, quantum information theory, and quantum gravity. [2] [3]

Contents

While mainstream theories assert that consciousness emerges as the complexity of the computations performed by cerebral neurons increases, [4] [5] Orch OR posits that consciousness is based on non-computable quantum processing performed by qubits formed collectively on cellular microtubules, a process significantly amplified in the neurons. The qubits are based on oscillating dipoles forming superposed resonance rings in helical pathways throughout lattices of microtubules. The oscillations are either electric, due to charge separation from London forces, or magnetic, due to electron spin—and possibly also due to nuclear spins (that can remain isolated for longer periods) that occur in gigahertz, megahertz and kilohertz frequency ranges. [2] [6] Orchestration refers to the hypothetical process by which connective proteins, such as microtubule-associated proteins (MAPs), influence or orchestrate qubit state reduction by modifying the spacetime-separation of their superimposed states. [7] The latter is based on Penrose's objective-collapse theory for interpreting quantum mechanics, which postulates the existence of an objective threshold governing the collapse of quantum-states, related to the difference of the spacetime curvature of these states in the universe's fine-scale structure. [8]

Orchestrated objective reduction has been criticized from its inception by mathematicians, philosophers, [9] [10] [11] [12] [13] and scientists. [14] [15] [16] The criticism concentrated on three issues: Penrose's interpretation of Gödel's theorem; Penrose's abductive reasoning linking non-computability to quantum events; and the brain's unsuitability to host the quantum phenomena required by the theory, since it is considered too "warm, wet and noisy" to avoid decoherence.

Background

Logician Kurt Godel Kurt godel.jpg
Logician Kurt Gödel

In 1931, mathematician and logician Kurt Gödel proved that any effectively generated theory capable of proving basic arithmetic cannot be both consistent and complete. In other words, a mathematically sound theory lacks the means to prove itself. [17] However, in his first book on consciousness, The Emperor's New Mind (1989), Roger Penrose argued that Gödel-unprovable results are provable by human mathematicians. [18] He takes this disparity to mean that human mathematicians are not describable as formal proof systems, and are therefore running a non-computable algorithm.

If correct, the Penrose–Lucas argument leaves the question of the physical basis of non-computable behaviour open. Most physical laws are computable, and thus algorithmic. However, Penrose determined that wave function collapse was a prime candidate for a non-computable process. In quantum mechanics, particles are treated differently from the objects of classical mechanics. Particles are described by wave functions that evolve according to the Schrödinger equation. Non-stationary wave functions are linear combinations of the eigenstates of the system, a phenomenon described by the superposition principle. When a quantum system interacts with a classical system—i.e. when an observable is measured—the system appears to collapse to a random eigenstate of that observable from a classical vantage point.

If collapse is truly random, then no process or algorithm can deterministically predict its outcome. This provided Penrose with a candidate for the physical basis of the non-computable process that he hypothesized to exist in the brain. However, he disliked the random nature of environmentally induced collapse, as randomness was not a promising basis for mathematical understanding. Penrose proposed that isolated systems may still undergo a new form of wave function collapse, which he called objective reduction (OR). [7]

Penrose sought to reconcile general relativity and quantum theory using his own ideas about the possible structure of spacetime. [18] [19] He suggested that at the Planck scale curved spacetime is not continuous, but discrete. He further postulated that each separated quantum superposition has its own piece of spacetime curvature, a blister in spacetime. Penrose suggests that gravity exerts a force on these spacetime blisters, which become unstable above the Planck scale of and collapse to just one of the possible states. The rough threshold for OR is given by Penrose's indeterminacy principle:

where:
  • is the time until OR occurs,
  • is the gravitational self-energy or the degree of spacetime separation given by the superpositioned mass, and
  • is the reduced Planck constant.

Thus, the greater the mass–energy of the object, the faster it will undergo OR and vice versa. Mesoscopic objects could collapse on a timescale relevant to neural processing. [7] [ additional citation(s) needed ]

An essential feature of Penrose's theory is that the choice of states when objective reduction occurs is selected neither randomly (as are choices following wave function collapse) nor algorithmically. Rather, states are selected by a "non-computable" influence embedded in the Planck scale of spacetime geometry. Penrose claimed that such information is Platonic, representing pure mathematical truths, which relates to Penrose's ideas concerning the three worlds: the physical, the mental, and the Platonic mathematical world. In Shadows of the Mind (1994), Penrose briefly indicates that this Platonic world could also include aesthetic and ethical values, but he does not commit to this further hypothesis. [19]

The Penrose–Lucas argument was criticized by mathematicians, [20] [21] [22] computer scientists, [12] and philosophers, [23] [24] [9] [10] [11] and the consensus among experts in these fields is that the argument fails, [25] [26] [27] with different authors attacking different aspects of the argument. [27] [28] Minsky argued that because humans can believe false ideas to be true, human mathematical understanding need not be consistent and consciousness may easily have a deterministic basis. [29] Feferman argued that mathematicians do not progress by mechanistic search through proofs, but by trial-and-error reasoning, insight and inspiration, and that machines do not share this approach with humans. [21]

Orch OR

Penrose outlined a predecessor to Orch OR in The Emperor's New Mind, coming to the problem from a mathematical viewpoint and in particular Gödel's theorem, but lacked a detailed proposal for how quantum processes could be implemented in the brain. Stuart Hameroff separately worked in cancer research and anesthesia, which gave him an interest in brain processes. Hameroff read Penrose's book and suggested to him that microtubules within neurons were suitable candidate sites for quantum processing, and ultimately for consciousness. [30] [31] Throughout the 1990s, the two collaborated on the Orch OR theory, which Penrose published in Shadows of the Mind (1994). [19]

Hameroff's contribution to the theory derived from his study of the neural cytoskeleton, and particularly on microtubules. [31] As neuroscience has progressed, the role of the cytoskeleton and microtubules has assumed greater importance. In addition to providing structural support, microtubule functions include axoplasmic transport and control of the cell's movement, growth and shape. [31]

Orch OR combines the Penrose–Lucas argument with Hameroff's hypothesis on quantum processing in microtubules. It proposes that when condensates in the brain undergo an objective wave function reduction, their collapse connects noncomputational decision-making to experiences embedded in spacetime's fundamental geometry. The theory further proposes that the microtubules both influence and are influenced by the conventional activity at the synapses between neurons.

Microtubule computation

A: An axon terminal releases neurotransmitters through a synapse and are received by microtubules in a neuron's dendritic spine.
B: Simulated microtubule tubulins switch states. Microtubule diagram.jpg
A: An axon terminal releases neurotransmitters through a synapse and are received by microtubules in a neuron's dendritic spine.
B: Simulated microtubule tubulins switch states.

Hameroff proposed that microtubules were suitable candidates for quantum processing. [31] Microtubules are made up of tubulin protein subunits. The tubulin protein dimers of the microtubules have hydrophobic pockets that may contain delocalized π electrons. Tubulin has other, smaller non-polar regions, for example 8 tryptophans per tubulin, which contain π electron-rich indole rings distributed throughout tubulin with separations of roughly 2 nm. Hameroff claims that this is close enough for the tubulin π electrons to become quantum entangled. [32] During entanglement, particle states become inseparably correlated. Hameroff originally suggested in the fringe Journal of Cosmology that the tubulin-subunit electrons would form a Bose–Einstein condensate. [33] He then proposed a Frohlich condensate, a hypothetical coherent oscillation of dipolar molecules. However, this too was rejected by Reimers's group. [34] Hameroff then responded to Reimers. "Reimers et al have most definitely NOT shown that strong or coherent Frohlich condensation in microtubules is unfeasible. The model microtubule on which they base their Hamiltonian is not a microtubule structure, but a simple linear chain of oscillators." Hameroff reasoned that such condensate behavior would magnify nanoscopic quantum effects to have large scale influences in the brain.

Hameroff then proposed that condensates in microtubules in one neuron can link with microtubule condensates in other neurons and glial cells via the gap junctions of electrical synapses. [35] [36] Hameroff proposed that the gap between the cells is sufficiently small that quantum objects can tunnel across it, allowing them to extend across a large area of the brain. He further postulated that the action of this large-scale quantum activity is the source of 40 Hz gamma waves, building upon the much less controversial theory that gap junctions are related to the gamma oscillation. [37]

In April 2022, the results of two related experiments were presented at The Science of Consciousness conference. In a study Hameroff was part of, Jack Tuszyński of the University of Alberta demonstrated that anesthetics hasten the duration of a process called delayed luminescence, in which microtubules and tubulins re-emit trapped light. Tuszyński suspects that the phenomenon has a quantum origin, with superradiance being investigated as one possibility. In the second experiment, Gregory D. Scholes and Aarat Kalra of Princeton University used lasers to excite molecules within tubulins, causing a prolonged excitation to diffuse through microtubules farther than expected, which did not occur when repeated under anesthesia. [38] [39] However, diffusion results have to be interpreted carefully, since even classical diffusion can be very complex due to the wide range of length scales in the fluid filled extracellular space. [40]

Microtubule quantum vibration theory of anesthetic action

At high concentrations (~5 MAC) the anesthetic gas halothane causes reversible depolymerization of microtubules. [41] This cannot be the mechanism of anesthetic action, however, because human anesthesia is performed at 1 MAC. (It is important to note that neither Penrose or Hameroff ever claim that depolymerization is the mechanism of action for ORCH OR. [42] [43] ) At ~1 MAC halothane, reported minor changes in tubulin protein expression (~1.3-fold) in primary cortical neurons after exposure to halothane and isoflurane are not evidence that tubulin directly interacts with general anesthetics, but rather shows that the proteins controlling tubulin production are possible anesthetic targets. [44] Further proteomic study reports 0.5 mM [14C]halothane binding to tubulin monomers alongside three dozens of other proteins. [45] In addition, modulation of microtubule stability has been reported during anthracene general anesthesia of tadpoles. [46]

What might anesthetics do to microtubules to cause loss of consciousness? A highly disputed theory put forth in the mid-1990s by Stuart Hameroff and Sir Roger Penrose posits that consciousness is based on quantum vibrations in tubulin/microtubules inside brain neurons. Computer modeling of tubulin's atomic structure [47] found that anesthetic gas molecules bind adjacent to amino acid aromatic rings of non-polar π-electrons and that collective quantum dipole oscillations among all π-electron resonance rings in each tubulin showed a spectrum with a common mode peak at 613 T Hz. [48] Simulated presence of 8 different anesthetic gases abolished the 613 THz peak, whereas the presence of 2 different nonanesthetic gases did not affect the 613 THz peak, from which it was speculated that this 613 THz peak in microtubules could be related to consciousness and anesthetic action. [48]

The 'Microtubule quantum vibration theory' of anesthetic action is controversial due to several critical flaws in the premise of Orch OR and falsification of data used in support of the theory. [49]

Criticism

Orch OR has been criticized both by physicists [14] [50] [34] [51] [52] and neuroscientists [53] [54] [55] who consider it to be a poor model of brain physiology. Orch OR has also been criticized for lacking explanatory power; the philosopher Patricia Churchland wrote, "Pixie dust in the synapses is about as explanatorily powerful as quantum coherence in the microtubules." [56]

David Chalmers argues against quantum consciousness. He instead discusses how quantum mechanics may relate to dualistic consciousness. [57] Chalmers is skeptical that any new physics can resolve the hard problem of consciousness. [58] [59] [60] He argues that quantum theories of consciousness suffer from the same weakness as more conventional theories. Just as he argues that there is no particular reason why particular macroscopic physical features in the brain should give rise to consciousness, he also thinks that there is no particular reason why a particular quantum feature, such as the EM field in the brain, should give rise to consciousness either. [61]

Decoherence in living organisms

In 2000 Max Tegmark claimed that any quantum coherent system in the brain would undergo effective wave function collapse due to environmental interaction long before it could influence neural processes (the "warm, wet and noisy" argument, as it later came to be known). [14] He determined the decoherence timescale of microtubule entanglement at brain temperatures to be on the order of femtoseconds, far too brief for neural processing. Christof Koch and Klaus Hepp also agreed that quantum coherence does not play, or does not need to play any major role in neurophysiology. [15] [16] Koch and Hepp concluded that "The empirical demonstration of slowly decoherent and controllable quantum bits in neurons connected by electrical or chemical synapses, or the discovery of an efficient quantum algorithm for computations performed by the brain, would do much to bring these speculations from the 'far-out' to the mere 'very unlikely'." [15]

In response to Tegmark's claims, Hagan, Tuszynski and Hameroff claimed that Tegmark did not address the Orch OR model, but instead a model of his own construction. This involved superpositions of quanta separated by 24 nm rather than the much smaller separations stipulated for Orch OR. As a result, Hameroff's group claimed a decoherence time seven orders of magnitude greater than Tegmark's, although still far below 25 ms. Hameroff's group also suggested that the Debye layer of counterions could screen thermal fluctuations, and that the surrounding actin gel might enhance the ordering of water, further screening noise. They also suggested that incoherent metabolic energy could further order water, and finally that the configuration of the microtubule lattice might be suitable for quantum error correction, a means of resisting quantum decoherence. [62] [63]

In 2009, Reimers et al. and McKemmish et al., published critical assessments. Earlier versions of the theory had required tubulin-electrons to form either Bose–Einsteins or Frohlich condensates, and the Reimers group noted the lack of empirical evidence that such could occur. Additionally they calculated that microtubules could only support weak 8 MHz coherence. McKemmish et al. argued that aromatic molecules cannot switch states because they are delocalised; and that changes in tubulin protein-conformation driven by GTP conversion would result in a prohibitive energy requirement. [50] [34] [51]

In 2022, a group of Italian physicists conducted several experiments that failed to provide evidence in support of a gravity-related quantum collapse model of consciousness, weakening the possibility of a quantum explanation for consciousness. [64] [65]

Neuroscience

Hameroff frequently writes: "A typical brain neuron has roughly 107 tubulins (Yu and Baas, 1994)", yet this is Hameroff's own invention, which should not be attributed to Yu and Baas. [66] Hameroff apparently misunderstood that Yu and Baas actually "reconstructed the microtubule (MT) arrays of a 56 μm axon from a cell that had undergone axon differentiation" and this reconstructed axon "contained 1430 MTs ... and the total MT length was 5750 μm." [66] A direct calculation shows that 107 tubulins (to be precise 9.3 × 106 tubulins) correspond to this MT length of 5750 μm inside the 56 μm axon.

Hameroff's 1998 hypothesis required that cortical dendrites contain primarily 'A' lattice microtubules, [67] but in 1994 Kikkawa et al. showed that all in vivo microtubules have a 'B' lattice and a seam. [68] [69]

Orch OR also required gap junctions between neurons and glial cells, [67] yet Binmöller et al. proved in 1992 that these do not exist in the adult brain. [70] In vitro research with primary neuronal cultures shows evidence for electrotonic (gap junction) coupling between immature neurons and astrocytes obtained from rat embryos extracted prematurely through Cesarean section; [49] however, the Orch OR claim is that mature neurons are electrotonically coupled to astrocytes in the adult brain. Therefore, Orch OR contradicts the well-documented electrotonic decoupling of neurons from astrocytes in the process of neuronal maturation, which is stated by Fróes et al. as follows: "junctional communication may provide metabolic and electrotonic interconnections between neuronal and astrocytic networks at early stages of neural development and such interactions are weakened as differentiation progresses." [49]

Other biology-based criticisms have been offered, including a lack of explanation for the probabilistic release of neurotransmitter from presynaptic axon terminals [71] [72] [73] and an error in the calculated number of the tubulin dimers per cortical neuron. [66]

In 2014, Penrose and Hameroff published responses to some criticisms and revisions to many of the theory's peripheral assumptions, while retaining the core hypothesis. [2] [6]

See also

Related Research Articles

<span class="mw-page-title-main">Consciousness</span> Awareness of internal and external existence

Consciousness, at its simplest, is awareness of internal and external existence. However, its nature has led to millennia of analyses, explanations and debate by philosophers, theologians, and all of science. Opinions differ about what exactly needs to be studied or even considered consciousness. In some explanations, it is synonymous with the mind, and at other times, an aspect of mind. In the past, it was one's "inner life", the world of introspection, of private thought, imagination and volition. Today, it often includes any kind of cognition, experience, feeling or perception. It may be awareness, awareness of awareness, or self-awareness either continuously changing or not. The disparate range of research, notions and speculations raises a curiosity about whether the right questions are being asked.

<span class="mw-page-title-main">Roger Penrose</span> English mathematical physicist (born 1931)

Sir Roger Penrose is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London.

<span class="mw-page-title-main">Cytoskeleton</span> Network of filamentous proteins that forms the internal framework of cells

The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms. It is composed of three main components: microfilaments, intermediate filaments, and microtubules, and these are all capable of rapid growth or disassembly depending on the cell's requirements.

<span class="mw-page-title-main">Stuart Hameroff</span> American anesthesiologist

Stuart Hameroff is an American anesthesiologist and professor at the University of Arizona known for his studies of consciousness and his controversial contention that consciousness originates from quantum states in neural microtubules. He is the lead organizer of the Science of Consciousness conference.

<i>The Emperors New Mind</i> Book by Sir Roger Penrose

The Emperor's New Mind: Concerning Computers, Minds and The Laws of Physics is a 1989 book by the mathematical physicist Roger Penrose.

Electromagnetic theories of consciousness propose that consciousness can be understood as an electromagnetic phenomenon.

Henry Pierce Stapp is an American mathematical physicist, known for his work in quantum mechanics, particularly the development of axiomatic S-matrix theory, the proofs of strong nonlocality properties, and the place of free will in the "orthodox" quantum mechanics of John von Neumann.

The philosophy of artificial intelligence is a branch of the philosophy of mind and the philosophy of computer science that explores artificial intelligence and its implications for knowledge and understanding of intelligence, ethics, consciousness, epistemology, and free will. Furthermore, the technology is concerned with the creation of artificial animals or artificial people so the discipline is of considerable interest to philosophers. These factors contributed to the emergence of the philosophy of artificial intelligence.

The Penrose interpretation is a speculation by Roger Penrose about the relationship between quantum mechanics and general relativity. Penrose proposes that a quantum state remains in superposition until the difference of space-time curvature attains a significant level.

<span class="mw-page-title-main">Quantum mysticism</span> Pseudo-science purporting to build on the principles of quantum mechanics

Quantum mysticism, sometimes referred pejoratively to as quantum quackery or quantum woo, is a set of metaphysical beliefs and associated practices that seek to relate consciousness, intelligence, spirituality, or mystical worldviews to the ideas of quantum mechanics and its interpretations. Quantum mysticism is considered pseudoscience and quackery by quantum mechanics experts.

<i>Shadows of the Mind</i> Book by Roger Penrose

Shadows of the Mind: A Search for the Missing Science of Consciousness is a 1994 book by mathematical physicist Roger Penrose that serves as a followup to his 1989 book The Emperor's New Mind: Concerning Computers, Minds and The Laws of Physics.

The quantum mind or quantum consciousness is a group of hypotheses proposing that local physical laws and interactions from classical mechanics or connections between neurons alone cannot explain consciousness, positing instead that quantum-mechanical phenomena, such as entanglement and superposition that cause nonlocalized quantum effects, interacting in smaller features of the brain than cells, may play an important part in the brain's function and could explain critical aspects of consciousness. These scientific hypotheses are as yet unvalidated, and they can overlap with quantum mysticism.

<i>Quantum Aspects of Life</i> Articles and debates on quantum theory and life, circa 2003-2004

Quantum Aspects of Life, a book published in 2008 with a foreword by Roger Penrose, explores the open question of the role of quantum mechanics at molecular scales of relevance to biology. The book contains chapters written by various world-experts from a 2003 symposium and includes two debates from 2003 to 2004; giving rise to a mix of both sceptical and sympathetic viewpoints. The book addresses questions of quantum physics, biophysics, nanoscience, quantum chemistry, mathematical biology, complexity theory, and philosophy that are inspired by the 1944 seminal book What Is Life? by Erwin Schrödinger.

Jack Tuszyński is a Polish professor of oncology and physicist.

Binocular rivalry is a visual phenomenon wherein one experiences alternating perceptions due to the occurrence of different stimuli presented to the corresponding retinal regions of the two eyes and their competition for perceptual dominance.

The Penrose–Lucas argument is a logical argument partially based on a theory developed by mathematician and logician Kurt Gödel. In 1931, he proved that every effectively generated theory capable of proving basic arithmetic either fails to be consistent or fails to be complete. Due to human ability to see the truth of formal system's Gödel sentences, it is argued that the human mind cannot be computed on a Turing machine that works on Peano arithmetic because the latter cannot see the truth value of its Gödel sentence, while human minds can. Mathematician Roger Penrose modified the argument in his first book on consciousness, The Emperor's New Mind (1989), where he used it to provide the basis of his theory of consciousness: orchestrated objective reduction.

<i>Quantum Night</i> 2016 Robert J. Sawyer novel

Quantum Night is a 2016 science-fiction thriller novel written by Canadian novelist Robert J. Sawyer. Set in 2020, the book touches on themes of quantum physics, psychology, current politics and ethics.

Models of consciousness are used to illustrate and aid in understanding and explaining distinctive aspects of consciousness. Sometimes the models are labeled theories of consciousness. Anil Seth defines such models as those that relate brain phenomena such as fast irregular electrical activity and widespread brain activation to properties of consciousness such as qualia. Seth allows for different types of models including mathematical, logical, verbal and conceptual models.

Quantum social science is an emerging field of interdisciplinary research which draws parallels between quantum physics and the social sciences. Although there is no settled consensus on a single approach, a unifying theme is that, while the social sciences have long modelled themselves on mechanistic science, they can learn much from quantum ideas such as complementarity and entanglement. Some authors are motivated by quantum mind theories that the brain, and therefore human interactions, are literally based on quantum processes, while others are more interested in taking advantage of the quantum toolkit to simulate social behaviours which elude classical treatment. Quantum ideas have been particularly influential in psychology but are starting to affect other areas such as international relations and diplomacy in what one 2018 paper called a "quantum turn in the social sciences".

Theories of holographic consciousness postulate that consciousness has structural and functional similarities to a hologram, in that the information needed to model the whole is contained within each constituent component.

References

  1. 1 2 Hameroff, Stuart (2012). "How quantum brain biology can rescue conscious free will". Frontiers in Integrative Neuroscience. 6: 93. doi: 10.3389/fnint.2012.00093 . PMC   3470100 . PMID   23091452.
  2. 1 2 3 Hameroff, Stuart; Penrose, Roger (2014). "Reply to seven commentaries on "Consciousness in the universe: Review of the 'Orch OR' theory"". Physics of Life Reviews. 11 (1): 94–100. Bibcode:2014PhLRv..11...94H. doi:10.1016/j.plrev.2013.11.013.
  3. Penrose, Roger (2014). "On the Gravitization of Quantum Mechanics 1: Quantum State Reduction". Foundations of Physics. 44 (5): 557–575. Bibcode:2014FoPh...44..557P. doi: 10.1007/s10701-013-9770-0 . S2CID   123379100.
  4. McCulloch, Warren S.; Pitts, Walter (1943). "A logical calculus of the ideas immanent in nervous activity". Bulletin of Mathematical Biophysics. 5 (4): 115–133. doi:10.1007/bf02478259.
  5. Hodgkin, Alan L.; Huxley, Andrew F. (1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve". Journal of Physiology. 117 (4): 500–544. doi:10.1113/jphysiol.1952.sp004764. PMC   1392413 . PMID   12991237.
  6. 1 2 Hameroff, Stuart; Penrose, Roger (2014). "Reply to criticism of the 'Orch OR qubit' – 'Orchestrated objective reduction' is scientifically justified". Physics of Life Reviews. 11 (1): 104–112. Bibcode:2014PhLRv..11..104H. doi:10.1016/j.plrev.2013.11.014.
  7. 1 2 3 Hameroff, Stuart; Penrose, Roger (2014). "Consciousness in the universe". Physics of Life Reviews. 11 (1): 39–78. Bibcode:2014PhLRv..11...39H. doi: 10.1016/j.plrev.2013.08.002 . PMID   24070914.
  8. Natalie Wolchover (31 October 2013). "Physicists Eye Quantum-Gravity Interface". Quanta Magazine (Article). Simons Foundation. Retrieved 19 March 2014.
  9. 1 2 Boolos, George; et al. (1990). "An Open Peer Commentary on The Emperor's New Mind". Behavioral and Brain Sciences. 13 (4): 655. doi:10.1017/s0140525x00080687. S2CID   144905437.
  10. 1 2 Davis, Martin (September 1993). "How subtle is Gödel's theorem? More on Roger Penrose". Behavioral and Brain Sciences. 16 (3): 611–612. doi:10.1017/S0140525X00031915. S2CID   144018337.
  11. 1 2 Lewis, David (July 1969). "Lucas against Mechanism". Philosophy. 44 (169): 231–233. doi: 10.1017/s0031819100024591 . S2CID   170411423.
  12. 1 2 Putnam, Hilary (1 July 1995). "Book Review: Shadows of the mind". Bulletin of the American Mathematical Society. 32 (3): 370–374. doi: 10.1090/S0273-0979-1995-00606-3 .
  13. Putnam, Hilary (20 November 1994). "The Best of All Possible Brains?". The New York Times.
  14. 1 2 3 Tegmark, Max (2000). "Importance of quantum decoherence in brain processes". Physical Review E. 61 (4): 4194–4206. arXiv: quant-ph/9907009 . Bibcode:2000PhRvE..61.4194T. doi:10.1103/PhysRevE.61.4194. PMID   11088215. S2CID   17140058.
  15. 1 2 3 Koch, Christof; Hepp, Klaus (2006). "Quantum mechanics in the brain". Nature. 440 (7084): 611. Bibcode:2006Natur.440..611K. doi: 10.1038/440611a . PMID   16572152. S2CID   5085015.
  16. 1 2 Hepp, K. (September 2012). "Coherence and decoherence in the brain". Journal of Mathematical Physics. 53 (9): 095222. Bibcode:2012JMP....53i5222H. doi:10.1063/1.4752474.
  17. Hofstadter 1979 , pp. 476–477, Russell & Norvig 2003 , p. 950, Turing 1950 under "The Argument from Mathematics" where he writes "although it is established that there are limitations to the powers of any particular machine, it has only been stated, without sort of proof, that no such limitations apply to the human intellect."
  18. 1 2 Penrose, Roger (1989). The Emperor's New Mind: Concerning Computers, Minds and The Laws of Physics. Oxford University Press. p. 480. ISBN   978-0-19-851973-7.
  19. 1 2 3 Penrose, Roger (1989). Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press. pp. 416–7, 457. ISBN   978-0-19-853978-0.
  20. LaForte, Geoffrey, Patrick J. Hayes, and Kenneth M. Ford 1998. Why Gödel's Theorem Cannot Refute Computationalism . Artificial Intelligence, 104:265–286.
  21. 1 2 Feferman, Solomon (1996). "Penrose's Gödelian argument". Psyche . 2: 21–32. CiteSeerX   10.1.1.130.7027 .
  22. Krajewski, Stanisław (2007). "On Gödel's Theorem and Mechanism: Inconsistency or Unsoundness is Unavoidable in any Attempt to 'Out-Gö del' the Mechanist". Fundamenta Informaticae. 81 (1–3): 173–181.
  23. "MindPapers: 6.1b. Godelian arguments". Consc.net. Retrieved 2014-07-28.
  24. "References for Criticisms of the Gödelian Argument". Users.ox.ac.uk. 1999-07-10. Retrieved 2014-07-28.
  25. Bringsjord, Selmer; Xiao, Hong (July 2000). "A refutation of Penrose's Gödelian case against artificial intelligence" (PDF). Journal of Experimental & Theoretical Artificial Intelligence. 12 (3): 307–329. doi:10.1080/09528130050111455. S2CID   5540500.
  26. In an article at "King's College London - Department of Mathematics". Archived from the original on 2001-01-25. Retrieved 2010-10-22. L.J. Landau at the Mathematics Department of King's College London writes that "Penrose's argument, its basis and implications, is rejected by experts in the fields which it touches."
  27. 1 2 Princeton Philosophy professor John Burgess writes in On the Outside Looking In: A Caution about Conservativeness (published in Kurt Gödel: Essays for his Centennial, with the following comments found on pp. 131–132) that "the consensus view of logicians today seems to be that the Lucas–Penrose argument is fallacious, though as I have said elsewhere, there is at least this much to be said for Lucas and Penrose, that logicians are not unanimously agreed as to where precisely the fallacy in their argument lies. There are at least three points at which the argument may be attacked."
  28. Dershowitz, Nachum 2005. The Four Sons of Penrose , in Proceedings of the Eleventh Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR; Jamaica), G. Sutcliffe and A. Voronkov, eds., Lecture Notes in Computer Science, vol. 3835, Springer-Verlag, Berlin, pp. 125–138.
  29. Marvin Minsky. "Conscious Machines." Machinery of Consciousness, Proceedings, National Research Council of Canada, 75th Anniversary Symposium on Science in Society, June 1991.
  30. Hameroff, Stuart R.; Watt, Richard C. (October 1982). "Information processing in microtubules". Journal of Theoretical Biology. 98 (4): 549–561. Bibcode:1982JThBi..98..549H. doi:10.1016/0022-5193(82)90137-0. PMID   6185798.
  31. 1 2 3 4 Hameroff, S.R. (1987). Ultimate Computing. Elsevier. ISBN   978-0-444-70283-8.
  32. Hameroff, Stuart (2008). "That's life! The geometry of π electron resonance clouds" (PDF). In Abbott, D; Davies, P; Pati, A (eds.). Quantum aspects of life. World Scientific. pp. 403–434. Archived from the original (PDF) on June 11, 2011. Retrieved Jan 21, 2010.
  33. Roger Penrose & Stuart Hameroff (2011). "Consciousness in the Universe: Neuroscience, Quantum Space-Time Geometry and Orch OR Theory". Journal of Cosmology. 14. Archived from the original on February 7, 2014.
  34. 1 2 3 Reimers, J. R.; McKemmish, L. K.; McKenzie, R. H.; Mark, A. E.; Hush, N. S. (2009). "Weak, strong, and coherent regimes of Frohlich condensation and their applications to terahertz medicine and quantum consciousness". Proceedings of the National Academy of Sciences. 106 (11): 4219–4224. Bibcode:2009PNAS..106.4219R. doi: 10.1073/pnas.0806273106 . PMC   2657444 . PMID   19251667.
  35. Hameroff, S.R. (2006). "The entwined mysteries of anesthesia and consciousness". Anesthesiology. 105 (2): 400–412. doi: 10.1097/00000542-200608000-00024 . PMID   16871075. S2CID   1655684.
  36. Hameroff, S. (2009). "The "conscious pilot"—dendritic synchrony moves through the brain to mediate consciousness". Journal of Biological Physics. 36 (1): 71–93. doi:10.1007/s10867-009-9148-x. PMC   2791805 . PMID   19669425.
  37. Bennett, M.V.L. & Zukin, R.S. (2004). "Electrical Coupling and Neuronal Synchronization in the Mammalian Brain". Neuron. 41 (4): 495–511. doi: 10.1016/S0896-6273(04)00043-1 . PMID   14980200. S2CID   18566176.
  38. Lewton, Thomas (18 April 2022). "Quantum experiments add weight to a fringe theory of consciousness" . New Scientist . Retrieved 23 April 2022.
  39. Tangermann, Victor. "Experiment Suggests That Consciousness May Be Rooted in Quantum Physics". www.futurism.com. Camden Media Inc. Retrieved 24 April 2022.
  40. Nicholson, Charles (May 2022). "The Secret World in the Gaps between Brain Cells". Physics Today. 75 (5): 26–32. Bibcode:2022PhT....75e..26N. doi:10.1063/PT.3.4999. S2CID   248620292.
  41. Allison, A.C; Nunn, J.F (December 1968). "Effects of General Anæsthetics on Microtubules". The Lancet. 292 (7582): 1326–1329. doi:10.1016/s0140-6736(68)91821-7. ISSN   0140-6736. PMID   4177393.
  42. Hameroff, Stuart; Penrose, Roger (2014). "Consciousness in the universe". Physics of Life Reviews. 11 (1): 39–78. Bibcode:2014PhLRv..11...39H. doi: 10.1016/j.plrev.2013.08.002 . PMID   24070914. S2CID   5015743.
  43. https://bigbangpage.com/wp-content/uploads/2015/04/orchestrated-objective-reduction-in-microtubuls...pdf [ bare URL PDF ]
  44. Pan, Jonathan Z.; Xi, Jin; Eckenhoff, Maryellen F.; Eckenhoff, Roderic G. (July 2008). "Inhaled anesthetics elicit region-specific changes in protein expression in mammalian brain". Proteomics. 8 (14): 2983–2992. doi: 10.1002/pmic.200800057 . ISSN   1615-9853. PMID   18655074. S2CID   24559322.
  45. Pan, Jonathan Z.; Xi, Jin; Tobias, John W.; Eckenhoff, Maryellen F.; Eckenhoff, Roderic G. (2007). "Halothane binding proteome in human brain cortex". Journal of Proteome Research. 6 (2): 582–592. doi:10.1021/pr060311u. PMID   17269715.
  46. Emerson, Daniel J.; Weiser, Brian P.; Psonis, John; Liao, Zhengzheng; Taratula, Olena; Fiamengo, Ashley; Wang, Xiaozhao; Sugasawa, Keizo; Smith, Amos B. (2013-03-29). "Direct Modulation of Microtubule Stability Contributes to Anthracene General Anesthesia". Journal of the American Chemical Society. 135 (14): 5389–5398. doi:10.1021/ja311171u. ISSN   0002-7863. PMC   3671381 . PMID   23484901.
  47. Craddock, Travis J. A.; St. George, Marc; Freedman, Holly; Barakat, Khaled H.; Damaraju, Sambasivarao; Hameroff, Stuart; Tuszynski, Jack A. (2012-06-25). "Computational Predictions of Volatile Anesthetic Interactions with the Microtubule Cytoskeleton: Implications for Side Effects of General Anesthesia". PLOS ONE. 7 (6): e37251. Bibcode:2012PLoSO...737251C. doi: 10.1371/journal.pone.0037251 . ISSN   1932-6203. PMC   3382613 . PMID   22761654.
  48. 1 2 Craddock, Travis J. A.; Kurian, Philip; Preto, Jordane; Sahu, Kamlesh; Hameroff, Stuart R.; Klobukowski, Mariusz; Tuszynski, Jack A. (2017-08-29). "Anesthetic Alterations of Collective Terahertz Oscillations in Tubulin Correlate with Clinical Potency: Implications for Anesthetic Action and Post-Operative Cognitive Dysfunction". Scientific Reports. 7 (1): 9877. Bibcode:2017NatSR...7.9877C. doi:10.1038/s41598-017-09992-7. ISSN   2045-2322. PMC   5575257 . PMID   28852014.
  49. 1 2 3 Froes, M. M.; Correia, A. H. P.; Garcia-Abreu, J.; Spray, D. C.; Campos De Carvalho, A. C.; Neto, V. M. (1999). "Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures". Proceedings of the National Academy of Sciences. 96 (13): 7541–46. Bibcode:1999PNAS...96.7541F. doi: 10.1073/pnas.96.13.7541 . PMC   22122 . PMID   10377451.
  50. 1 2 McKemmish, Laura K.; Reimers, Jeffrey R.; McKenzie, Ross H.; Mark, Alan E.; Hush, Noel S. (13 August 2009). "Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible" (PDF). Physical Review E. 80 (2): 021912. Bibcode:2009PhRvE..80b1912M. doi:10.1103/PhysRevE.80.021912. PMID   19792156.
  51. 1 2 Reimers, Jeffrey R.; McKemmish, Laura K.; McKenzie, Ross H.; Mark, Alan E.; Hush, Noel S. (2014). "The revised Penrose–Hameroff orchestrated objective-reduction proposal for human consciousness is not scientifically justified". Physics of Life Reviews. 11 (1): 101–103. Bibcode:2014PhLRv..11..101R. doi:10.1016/j.plrev.2013.11.003. PMID   24268490.
  52. Villatoro, Francisco R. (June 17, 2015). "On the quantum theory of consciousness". Mapping Ignorance. University of the Basque Country. Retrieved August 18, 2018. Hameroff's ideas in the hands of Penrose have developed almost to absurdity.
  53. Baars BJ, Edelman DB (2012). "Consciousness, biology and quantum hypotheses". Physics of Life Reviews. 9 (3): 285–294. Bibcode:2012PhLRv...9..285B. doi:10.1016/j.plrev.2012.07.001. PMID   22925839.
  54. Georgiev, Danko D. (2017). Quantum Information and Consciousness: A Gentle Introduction. Boca Raton: CRC Press. p. 177. ISBN   9781138104488. OCLC   1003273264.
  55. Litt A, Eliasmith C, Kroon FW, Weinstein S, Thagard P (2006). "Is the brain a quantum computer?". Cognitive Science. 30 (3): 593–603. doi: 10.1207/s15516709cog0000_59 . PMID   21702826.
  56. Churchland, Patricia S. "Brainshy: Non-Neural Theories of Conscious Experience" (PDF). Retrieved 2021-03-03.
  57. Stephen P. Stich; Ted A. Warfield (15 April 2008). The Blackwell Guide to Philosophy of Mind. John Wiley & Sons. p. 126. ISBN   9780470998755.
  58. David J. Chalmers (1995). "Facing Up to the Problem of Consciousness". Journal of Consciousness Studies. 2 (3): 200–219.
  59. Chalmers, David J. (1997). The Conscious Mind: In Search of a Fundamental Theory (Paperback ed.). New York: Oxford University Press. ISBN   978-0-19-511789-9.
  60. David Chalmers (1996). The Conscious Mind: In Search of a Fundamental Theory . Oxford University Press. ISBN   978-0-19-510553-7.
  61. David Chalmers (1996). The Conscious Mind: In Search of a Fundamental Theory . Oxford University Press. ISBN   978-0-19-510553-7.
  62. Hagan, S.; Hameroff, S. R.; Tuszyński, J. A. (2002). "Quantum computation in brain microtubules: Decoherence and biological feasibility". Physical Review E. 65 (6): 061901. arXiv: quant-ph/0005025 . Bibcode:2002PhRvE..65f1901H. doi:10.1103/PhysRevE.65.061901. PMID   12188753. S2CID   11707566.
  63. Tuszynski, Jack A, ed. (2006). The Emerging Physics of Consciousness. The Frontiers Collection. pp. 193–253. Bibcode:2006epc..book.....T. doi:10.1007/3-540-36723-3. ISBN   978-3-540-23890-4.
  64. "Collapsing a leading theory for the quantum origin of consciousness". phys.org. 13 June 2022.
  65. Derakhshani, Maaneli; Diósi, Lajos; Laubenstein, Matthias; Piscicchia, Kristian; Curceanu, Catalina (1 September 2022). "At the crossroad of the search for spontaneous radiation and the Orch OR consciousness theory". Physics of Life Reviews. 42: 8–14. Bibcode:2022PhLRv..42....8D. doi:10.1016/j.plrev.2022.05.004. PMID   35617922. S2CID   248868080.
  66. 1 2 3 Yu, W.; Baas, PW (1994). "Changes in microtubule number and length during axon differentiation". The Journal of Neuroscience. 14 (5): 2818–2829. doi: 10.1523/jneurosci.14-05-02818.1994 . PMC   6577472 . PMID   8182441. S2CID   11922397.
  67. 1 2 Stuart, Hameroff (15 August 1998). "Quantum computation in brain microtubules? The Penrose–Hameroff 'Orch OR' model of consciousness". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 356 (1743): 1869–1896. Bibcode:1998RSPTA.356.1869H. doi:10.1098/rsta.1998.0254.
  68. Kikkawa, M. (1994). "Direct visualization of the microtubule lattice seam both in vitro and in vivo". The Journal of Cell Biology. 127 (6): 1965–1971. doi:10.1083/jcb.127.6.1965. PMC   2120284 . PMID   7806574.
  69. Kikkawa, M., Metlagel, Z. (2006). "A molecular "zipper" for microtubules". Cell. 127 (7): 1302–1304. doi: 10.1016/j.cell.2006.12.009 . PMID   17190594. S2CID   31980600.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  70. F. J. Binmöller & C. M. Müller (1992). "Postnatal development of dye-coupling among astrocytes in rat visual cortex". Glia. 6 (2): 127–137. doi:10.1002/glia.440060207. PMID   1328051. S2CID   548862.
  71. Beck, F; Eccles, J C (December 1992). "Quantum aspects of brain activity and the role of consciousness". Proceedings of the National Academy of Sciences. 89 (23): 11357–11361. Bibcode:1992PNAS...8911357B. doi: 10.1073/pnas.89.23.11357 . PMC   50549 . PMID   1333607.
  72. Friedrich Beck (1996). "Can quantum processes control synaptic emission?". International Journal of Neural Systems. 7 (4): 343–353. Bibcode:1995IJNS....6..145A. doi:10.1142/S0129065796000300. PMID   8968823.
  73. Friedrich Beck; John C. Eccles (1998). "Quantum processes in the brain: A scientific basis of consciousness". Cognitive Studies: Bulletin of the Japanese Cognitive Science Society. 5 (2): 95–109. doi:10.11225/jcss.5.2_95.