Penrose interpretation

Last updated

The Penrose interpretation is a speculation by Roger Penrose about the relationship between quantum mechanics and general relativity. Penrose proposes that a quantum state remains in superposition until the difference of space-time curvature attains a significant level. [1] [2] [3]

Contents

Overview

Penrose's idea is inspired by quantum gravity, because it uses both the physical constants and . It is an alternative to the Copenhagen interpretation, which posits that superposition fails when an observation is made (but that it is non-objective in nature), and the many-worlds interpretation, which states that alternative outcomes of a superposition are equally "real", while their mutual decoherence precludes subsequent observable interactions.

Penrose's idea is a type of objective collapse theory. For these theories, the wavefunction is a physical wave, which experiences wave function collapse as a physical process, with observers not having any special role. Penrose theorises that the wave function cannot be sustained in superposition beyond a certain energy difference between the quantum states. He gives an approximate value for this difference: a Planck mass worth of matter, which he calls the "'one-graviton' level". [1] He then hypothesizes that this energy difference causes the wave function to collapse to a single state, with a probability based on its amplitude in the original wave function, a procedure derived from standard quantum mechanics. Penrose's "'one-graviton' level" criterion forms the basis of his prediction, providing an objective criterion for wave function collapse. [1] Despite the difficulties of specifying this in a rigorous way, he proposes that the basis states into which the collapse takes place are mathematically described by the stationary solutions of the Schrödinger–Newton equation. [4] [5] Recent theoretical work indicates an increasingly deep inter-relation between quantum mechanics and gravitation. [6] [7]

Physical consequences

Accepting that wavefunctions are physically real, Penrose believes that matter can exist in more than one place at one time. In his opinion, a macroscopic system, like a human being, cannot exist in more than one place for a measurable time, as the corresponding energy difference is very large. A microscopic system, like an electron, can exist in more than one location significantly longer (thousands of years), until its space-time curvature separation reaches collapse threshold. [8] [9]

In Einstein's theory, any object that has mass causes a warp in the structure of space and time around it. This warping produces the effect we experience as gravity. Penrose points out that tiny objects, such as dust specks, atoms and electrons, produce space-time warps as well. Ignoring these warps is where most physicists go awry. If a dust speck is in two locations at the same time, each one should create its own distortions in space-time, yielding two superposed gravitational fields. According to Penrose's theory, it takes energy to sustain these dual fields. The stability of a system depends on the amount of energy involved: the higher the energy required to sustain a system, the less stable it is. Over time, an unstable system tends to settle back to its simplest, lowest-energy state: in this case, one object in one location producing one gravitational field. If Penrose is right, gravity yanks objects back into a single location, without any need to invoke observers or parallel universes. [2]

Penrose speculates that the transition between macroscopic and quantum states begins at the scale of dust particles (the mass of which is close to a Planck mass). He has proposed an experiment to test this theory, called FELIX (free-orbit experiment with laser interferometry X-rays), in which an X-ray laser in space is directed toward a tiny mirror and fissioned by a beam splitter from tens of thousands of miles away, with which the photons are directed toward other mirrors and reflected back. One photon will strike the tiny mirror while moving to another mirror and move the tiny mirror back as it returns, and according to conventional quantum theories, the tiny mirror can exist in superposition for a significant period of time. This would prevent any photons from reaching the detector. If Penrose's hypothesis is correct, the mirror's superposition will collapse to one location in about a second, allowing half the photons to reach the detector. [2]

However, because this experiment would be difficult to arrange, a table-top version that uses optical cavities to trap the photons long enough for achieving the desired delay has been proposed instead. [10]

See also

Relevant books by Roger Penrose

Related Research Articles

<span class="mw-page-title-main">Many-worlds interpretation</span> Interpretation of quantum mechanics that denies the collapse of the wavefunction

The many-worlds interpretation (MWI) is a philosophical position about how the mathematics used in quantum mechanics relates to physical reality. It asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum measurements are physically realized in some "world" or universe. In contrast to some other interpretations, the evolution of reality as a whole in MWI is rigidly deterministic and local. Many-worlds is also called the relative state formulation or the Everett interpretation, after physicist Hugh Everett, who first proposed it in 1957. Bryce DeWitt popularized the formulation and named it many-worlds in the 1970s.

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, “The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at and below the scale of atoms. It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Schrödinger's cat</span> Thought experiment in quantum mechanics

In quantum mechanics, Schrödinger's cat is a thought experiment, sometimes described as a paradox, of quantum superposition. In the thought experiment, a hypothetical cat may be considered simultaneously both alive and dead, while it is unobserved in a closed box, as a result of its fate being linked to a random subatomic event that may or may not occur. This thought experiment was devised by physicist Erwin Schrödinger in 1935 in a discussion with Albert Einstein to illustrate what Schrödinger saw as the problems of the Copenhagen interpretation of quantum mechanics.

In quantum mechanics, wave function collapse occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation, and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation. Collapse is a black box for a thermodynamically irreversible interaction with a classical environment.

The many-minds interpretation of quantum mechanics extends the many-worlds interpretation by proposing that the distinction between worlds should be made at the level of the mind of an individual observer. The concept was first introduced in 1970 by H. Dieter Zeh as a variant of the Hugh Everett interpretation in connection with quantum decoherence, and later explicitly called a many or multi-consciousness interpretation. The name many-minds interpretation was first used by David Albert and Barry Loewer in 1988.

<span class="mw-page-title-main">Orchestrated objective reduction</span> Theory of a quantum origin of consciousness

Orchestrated objective reduction is a theory which postulates that consciousness originates at the quantum level inside neurons, rather than the conventional view that it is a product of connections between neurons. The mechanism is held to be a quantum process called objective reduction that is orchestrated by cellular structures called microtubules. It is proposed that the theory may answer the hard problem of consciousness and provide a mechanism for free will. The hypothesis was first put forward in the early 1990s by Nobel laureate for physics, Roger Penrose, and anaesthesiologist Stuart Hameroff. The hypothesis combines approaches from molecular biology, neuroscience, pharmacology, philosophy, quantum information theory, and quantum gravity.

In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key set of questions that each interpretation must answer.

<span class="mw-page-title-main">Black hole information paradox</span> Mystery of disappearance of information in a black hole

The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation called Hawking radiation. He also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and depend only on its mass, electric charge and angular momentum.

The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics. It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a Poisson equation. In the latter case it is also referred to in the plural form.

<i>Shadows of the Mind</i> Book by Roger Penrose

Shadows of the Mind: A Search for the Missing Science of Consciousness is a 1994 book by mathematical physicist Roger Penrose that serves as a followup to his 1989 book The Emperor's New Mind: Concerning Computers, Minds and The Laws of Physics.

The quantum mind or quantum consciousness is a group of hypotheses proposing that local physical laws and interactions from classical mechanics or connections between neurons alone cannot explain consciousness, positing instead that quantum-mechanical phenomena, such as entanglement and superposition that cause nonlocalized quantum effects, interacting in smaller features of the brain than cells, may play an important part in the brain's function and could explain critical aspects of consciousness. These scientific hypotheses are as yet unvalidated, and they can overlap with quantum mysticism.

Objective-collapse theories, also known as models of spontaneous wave function collapse or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other theories called interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the wave function describing the state of a quantum system is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.

The Ghirardi–Rimini–Weber theory (GRW) is a spontaneous collapse theory in quantum mechanics, proposed in 1986 by Giancarlo Ghirardi, Alberto Rimini, and Tullio Weber.

In physics, the observer effect is the disturbance of an observed system by the act of observation. This is often the result of utilizing instruments that, by necessity, alter the state of what they measure in some manner. A common example is checking the pressure in an automobile tire, which causes some of the air to escape, thereby changing the pressure to observe it. Similarly, seeing non-luminous objects requires light hitting the object to cause it to reflect that light. While the effects of observation are often negligible, the object still experiences a change. This effect can be found in many domains of physics, but can usually be reduced to insignificance by using different instruments or observation techniques.

The Free-orbit Experiment with Laser Interferometry X-Rays (FELIX) belongs to a category of experiments exploring whether macroscopic systems can be in superposition states. It was originally proposed by the physicist Roger Penrose in his 2004 book The Road to Reality specifically to prove whether unconventional decoherence processes such as gravitationally induced decoherence or spontaneous wave-function collapse of a quantum system occur.

Negative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects.

The Diósi–Penrose model was introduced as a possible solution to the measurement problem, where the wave function collapse is related to gravity. The model was first suggested by Lajos Diósi when studying how possible gravitational fluctuations may affect the dynamics of quantum systems. Later, following a different line of reasoning, Roger Penrose arrived at an estimation for the collapse time of a superposition due to gravitational effects, which is the same as that found by Diósi, hence the name Diósi–Penrose model. However, it should be pointed out that while Diósi gave a precise dynamical equation for the collapse, Penrose took a more conservative approach, estimating only the collapse time of a superposition.

Gravitational decoherence is a term for hypothetical mechanisms by which gravitation can act on quantum mechanical systems to produce decoherence. Advocates of gravitational decoherence include Frigyes Károlyházy, Roger Penrose and Lajos Diósi.

References

  1. 1 2 3 Penrose, Roger (1999) [1989], The Emperor's New Mind (New Preface (1999) ed.), Oxford, England: Oxford University Press, pp. 475–481, ISBN   978-0-19-286198-6
  2. 1 2 3 Folger, Tim. "If an Electron Can Be in 2 Places at Once, Why Can't You?" Discover . Vol. 25 No. 6 (June 2005). pp. 33–35.
  3. Penrose, Roger (1996). "On Gravity's Role in Quantum State Reduction" (PDF). General Relativity and Gravitation. 28 (5): 581–600. Bibcode:1996GReGr..28..581P. doi:10.1007/BF02105068. S2CID   44038399.
  4. Penrose, Roger (1998), "Quantum computation, entanglement and state reduction", Phil. Trans. R. Soc. Lond. A, 356 (1743): 1927–1939, Bibcode:1998RSPTA.356.1927P, doi:10.1098/rsta.1998.0256, S2CID   83378847 .
  5. Penrose, Roger (2014), "On the Gravitization of Quantum Mechanics 1: Quantum State Reduction", Foundations of Physics, 44 (5): 557–575, Bibcode:2014FoPh...44..557P, doi: 10.1007/s10701-013-9770-0 .
  6. Leonard Susskind, Copenhagen vs Everett, Teleportation, and ER=EPR (2016) seminar notes, arXiv.
  7. Dunajski, Maciej; Penrose, Roger (2023). "Quantum state reduction, and Newtonian twistor theory". Annals of Physics. 451: 169243. arXiv: 2203.08567 . Bibcode:2023AnPhy.45169243D. doi:10.1016/j.aop.2023.169243. S2CID   247476160.
  8. Penrose, Roger (2007), Road to Reality, Vintage Books, pp. 856–860, ISBN   978-0-679-77631-4 .
  9. S. Hameroff; R. Penrose (2014). "Consciousness in the universe: A review of the 'Orch OR' theory". Physics of Life Reviews. 11 (1): 51–53. Bibcode:2014PhLRv..11...39H. doi: 10.1016/j.plrev.2013.08.002 . PMID   24070914.
  10. Marshall, W., Simon, C., Penrose, R., and Bouwmeester, D. (2003). "Towards quantum superpositions of a mirror". Physical Review Letters . 91 (13): 130401. arXiv: quant-ph/0210001 . Bibcode:2003PhRvL..91m0401M. doi:10.1103/PhysRevLett.91.130401. PMID   14525288. S2CID   16651036.{{cite journal}}: CS1 maint: multiple names: authors list (link)