Free-orbit experiment with laser interferometry X-rays

Last updated

The Free-orbit Experiment with Laser Interferometry X-Rays (FELIX) [1] belongs to a category of experiments exploring whether macroscopic systems can be in superposition states. It was originally proposed by the physicist Roger Penrose in his 2004 book, " The Road to Reality" specifically to prove whether unconventional decoherence processes such as gravitationally induced decoherence or spontaneous wave-function collapse of a quantum system occur.

Contents

Later revised to take place as a tabletop experiment, [2] [3] if successful, it is estimated that a mass of roughly 1014 atoms would have been superposed, approximately nine orders of magnitude more massive than any superposition observed to that date (2003).

Configuration

Figure 2. A Michelson interferometer. Michelson interferometer with labels.svg
Figure 2. A Michelson interferometer.

The proposed experimental setup is basically a variation of the Michelson interferometer but for a single photon. Additionally, one of the mirrors has to be very tiny and fixed on an isolated micromechanical-oscillator. This allows it to move when the photon is reflected on it, so that it may become superposed with the photon. The purpose is to vary the size of the mirror to investigate the effect of the mass on the time it takes for the quantum system to collapse.

Originally the arms of the interferometer had to stretch into the hundreds of thousands of kilometers to achieve a photon roundtrip-time comparable to the oscillator's period, but that meant that the experiment had to take place in-orbit, reducing its viability. The revised proposal [2] requires that the mirrors be placed into high-finesse optical cavities that will trap the photons long enough to achieve the desired delay.

There are various technological challenges, but all are within high-end laboratory capabilities. The primary requirement is that the mass of the cavity remains as small as possible. To avoid noise on the interferometer and have a low probability of emitting more than one photon each time, a very low absolute temperature for the experiment is needed, on the order of 60 μK. For similar reasons, and to avoid decoherence, the experimental device has to be in ultra-high vacuum conditions. The wavelength of the photons was calculated to be roughly 630 nm so the reflecting surfaces can be as small as possible and yet avoid refraction and reflectivity issues. The micromechanical-oscillator can be similar to the cantilevers in atomic force microscopy and the reflective surfaces typically used in similar high-demanding experiments pose no real challenge. Various elaborate electromagnetic mechanisms have been proposed to "reset" the cavities to a stable state before each repetition of the experiment.

See also

Related Research Articles

<span class="mw-page-title-main">Many-worlds interpretation</span> Interpretation of quantum mechanics

The many-worlds interpretation (MWI) is a philosophical position about how the mathematics used in quantum mechanics relates to physical reality. It asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum measurements are physically realized in some "world" or universe. In contrast to some other interpretations of quantum mechanics, the evolution of reality as a whole in MWI is rigidly deterministic and local. Many-worlds is also called the relative state formulation or the Everett interpretation, after physicist Hugh Everett, who first proposed it in 1957. Bryce DeWitt popularized the formulation and named it many-worlds in the 1970s.

<span class="mw-page-title-main">Schrödinger's cat</span> Thought experiment in quantum mechanics

In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition. In the thought experiment, a hypothetical cat may be considered simultaneously both alive and dead, while it is unobserved in a closed box, as a result of its fate being linked to a random subatomic event that may or may not occur. This experiment viewed this way is described as a paradox. This thought experiment was devised by physicist Erwin Schrödinger in 1935 in a discussion with Albert Einstein to illustrate what Schrödinger saw as the problems of the Copenhagen interpretation of quantum mechanics.

In quantum mechanics, wave function collapse, also called reduction of the state vector, occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation, and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation.

<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.

<span class="mw-page-title-main">Orchestrated objective reduction</span> Theory of a quantum origin of consciousness

Orchestrated objective reduction is a highly controversial theory postulating that consciousness originates at the quantum level inside neurons. The mechanism is held to be a quantum process called objective reduction that is orchestrated by cellular structures called microtubules. It is proposed that the theory may answer the hard problem of consciousness and provide a mechanism for free will. The hypothesis was first put forward in the early 1990s by Nobel laureate for physics, Roger Penrose, and anaesthesiologist Stuart Hameroff. The hypothesis combines approaches from molecular biology, neuroscience, pharmacology, philosophy, quantum information theory, and quantum gravity.

In quantum mechanics, the measurement problem is the problem of definite outcomes: quantum systems have superpositions but quantum measurements only give one definite result.

An atom interferometer uses the wave-like nature of atoms in order to produce interference. In atom interferometers, the roles of matter and light are reversed compared to the laser based interferometers, i.e. the beam splitter and mirrors are lasers while the source emits matter waves rather than light. Atom interferometers measure the difference in phase between atomic matter waves along different paths. Matter waves are controlled an manipulated using systems of lasers. Atom interferometers have been used in tests of fundamental physics, including measurements of the gravitational constant, the fine-structure constant, and universality of free fall. Applied uses of atom interferometers include accelerometers, rotation sensors, and gravity gradiometers.

The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics. It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a Poisson equation. In the latter case it is also referred to in the plural form.

<span class="mw-page-title-main">Wheeler's delayed-choice experiment</span> Number of quantum physics thought experiments

Wheeler's delayed-choice experiment describes a family of thought experiments in quantum physics proposed by John Archibald Wheeler, with the most prominent among them appearing in 1978 and 1984. These experiments are attempts to decide whether light somehow "senses" the experimental apparatus in the double-slit experiment it travels through, adjusting its behavior to fit by assuming an appropriate determinate state, or whether light remains in an indeterminate state, exhibiting both wave-like and particle-like behavior until measured.

The Penrose interpretation is a speculation by Roger Penrose about the relationship between quantum mechanics and general relativity. Penrose proposes that a quantum state remains in superposition until the difference of space-time curvature attains a significant level.

<i>Shadows of the Mind</i> Book by Roger Penrose

Shadows of the Mind: A Search for the Missing Science of Consciousness is a 1994 book by mathematical physicist Roger Penrose that serves as a followup to his 1989 book The Emperor's New Mind: Concerning Computers, Minds and The Laws of Physics.

Objective-collapse theories, also known spontaneous collapse models or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the wave function describing the state of a quantum system is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.

In quantum mechanics, the cat state, named after Schrödinger's cat, refers to a quantum state composed of a superposition of two other states of flagrantly contradictory aspects. Generalizing Schrödinger's thought experiment, any other quantum superposition of two macroscopically distinct states is also referred to as a cat state. A cat state could be of one or more modes or particles, therefore it is not necessarily an entangled state. Such cat states have been experimentally realized in various ways and at various scales.

The von Neumann–Wigner interpretation, also described as "consciousness causes collapse", is an interpretation of quantum mechanics in which consciousness is postulated to be necessary for the completion of the process of quantum measurement.

A matter wave clock is a type of clock whose principle of operation makes use of the apparent wavelike properties of matter.

Counterfactual quantum computation is a method of inferring the result of a computation without actually running a quantum computer otherwise capable of actively performing that computation.

<span class="mw-page-title-main">Cavity optomechanics</span>

Cavity optomechanics is a branch of physics which focuses on the interaction between light and mechanical objects on low-energy scales. It is a cross field of optics, quantum optics, solid-state physics and materials science. The motivation for research on cavity optomechanics comes from fundamental effects of quantum theory and gravity, as well as technological applications.

In quantum physics, light is in a squeezed state if its electric field strength Ԑ for some phases has a quantum uncertainty smaller than that of a coherent state. The term squeezing thus refers to a reduced quantum uncertainty. To obey Heisenberg's uncertainty relation, a squeezed state must also have phases at which the electric field uncertainty is anti-squeezed, i.e. larger than that of a coherent state. Since 2019, the gravitational-wave observatories LIGO and Virgo employ squeezed laser light, which has significantly increased the rate of observed gravitational-wave events.

The Diósi–Penrose model was introduced as a possible solution to the measurement problem, where the wave function collapse is related to gravity. The model was first suggested by Lajos Diósi when studying how possible gravitational fluctuations may affect the dynamics of quantum systems. Later, following a different line of reasoning, Roger Penrose arrived at an estimation for the collapse time of a superposition due to gravitational effects, which is the same as that found by Diósi, hence the name Diósi–Penrose model. However, it should be pointed out that while Diósi gave a precise dynamical equation for the collapse, Penrose took a more conservative approach, estimating only the collapse time of a superposition.

Gravitational decoherence is a term for hypothetical mechanisms by which gravitation can act on quantum mechanical systems to produce decoherence. Advocates of gravitational decoherence include Frigyes Károlyházy, Roger Penrose and Lajos Diósi.

References

  1. Penrose, Roger (Dec 2002) [2000]. "Gravitational Collapse of the Wavefunction: An Experimentally Testable Proposal" (PDF). The Ninth Marcel Grossmann Meeting. World Scientific. pp. 3–6. doi:10.1142/9789812777386_0001. ISBN   9789812777386 . Retrieved 21 June 2014.
  2. 1 2 Marshall, William; Christoph, Simon; Penrose, Roger; Bouwmeester, Dik (Sep 2003). "Towards quantum superpositions of a mirror". Physical Review Letters. 91 (13): 130401–130405. arXiv: quant-ph/0210001 . Bibcode:2003PhRvL..91m0401M. doi:10.1103/PhysRevLett.91.130401. PMID   14525288. S2CID   16651036.
  3. Adler, Stephen; Bassi, Angelo; Ippoliti, Emiliano (9 March 2005). "Towards quantum superpositions of a mirror: an exact open systems analysis—calculational details". Journal of Physics A: Mathematical and General. 38 (12): 2715–2727. arXiv: quant-ph/0407084 . Bibcode:2005JPhA...38.2715A. doi:10.1088/0305-4470/38/12/013. S2CID   14896336.