Black hole bomb

Last updated

A black hole bomb is the name given to a physical effect utilizing how a bosonic field impinging on a rotating black hole can be amplified through superradiant scattering. If the amplified field is reflected back towards the black hole, the amplification can be repeated, leading to a run-away growth of the field, i.e. an explosion. One way this reflection could be realized in nature is if the bosonic field has mass. The mass of the field can then cause the amplified modes to be trapped around the black hole, leading to an endless cycle of self-amplification. The mechanism by which the black hole bomb functions is called superradiant instability. It can also refer to one such method of creating such a runaway effect, a Penrose sphere with no means for energy to passively escape.

Contents

History

The idea that angular momentum and energy may be transferred from a rotating black hole to a particle being scattered by it was proposed by Roger Penrose in 1971. The first discussion of a runaway effect, the black hole bomb, was explored by W. H. Press and S. A. Teukolsky in 1972. [1] If such an effect were to spontaneously occur, it may point to new physics beyond the Standard Model, and showing that black holes have "hair", as pointed out by a paper from 2017, by William E. East and Frans Pretorius. [2]

See also

Related Research Articles

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics, and where quantum effects cannot be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, and where the effects of gravity are strong, such as neutron stars.

Hawking radiation Thermal radiation emitted outside the event horizon of a black hole

Hawking radiation is black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries containing event horizons or local apparent horizons.

No-hair theorem Black holes are characterized only by mass, charge, and spin

The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum. Other characteristics are uniquely determined by these three parameters, and all other information about the matter that formed a black hole or is falling into it "disappears" behind the black-hole event horizon and is therefore permanently inaccessible to external observers after the black hole "settles down". Physicist John Archibald Wheeler expressed this idea with the phrase "black holes have no hair", which was the origin of the name.

False vacuum decay Hypothetical vacuum, less stable than true vacuum

In quantum field theory, a false vacuum is a hypothetical vacuum that is stable, but not in the most stable state possible. It may last for a very long time in that state, but could eventually decay to the more stable state, an event known as false vacuum decay. The most common suggestion of how such a decay might happen in our universe is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" would spread.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

This is a timeline of subatomic particle discoveries, including all particles thus far discovered which appear to be elementary given the best available evidence. It also includes the discovery of composite particles and antiparticles that were of particular historical importance.

In physics, superradiance is the radiation enhancement effects in several contexts including quantum mechanics, astrophysics and relativity.

Topological order Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

A sonic black hole, sometimes called a dumb hole or acoustic black hole, is a phenomenon in which phonons are unable to escape from a region of a fluid that is flowing more quickly than the local speed of sound. They are called sonic, or acoustic, black holes because these trapped phonons are analogous to light in astrophysical (gravitational) black holes. Physicists are interested in them because they have many properties similar to astrophysical black holes and, in particular, emit a phononic version of Hawking radiation. This Hawking radiation can be spontaneously created by quantum vacuum fluctuations, in close analogy with Hawking radiation from a real black hole. On the other hand, the Hawking radiation can be stimulated in a classical process. The boundary of a sonic black hole, at which the flow speed changes from being greater than the speed of sound to less than the speed of sound, is called the event horizon.

In particle physics hexaquarks, alternatively known as sexaquarks, are a large family of hypothetical particles, each particle consisting of six quarks or antiquarks of any flavours. Six constituent quarks in any of several combinations could yield a colour charge of zero; for example a hexaquark might contain either six quarks, resembling two baryons bound together, or three quarks and three antiquarks. Once formed, dibaryons are predicted to be fairly stable by the standards of particle physics.

The Gregory–Laflamme instability is a result in theoretical physics which states that certain black strings and branes are unstable in dimensions higher than four.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

Primordial black hole (also abbreviated as PBH) is a hypothetical type of black hole that formed soon after the Big Bang. In the early universe, high densities and heterogeneous conditions could have led sufficiently dense regions to undergo gravitational collapse, forming black holes. Yakov Borisovich Zel'dovich and Igor Dmitriyevich Novikov in 1966 first proposed the existence of such black holes. The theory behind their origins was first studied in depth by Stephen Hawking in 1971. Since primordial black holes did not form from stellar gravitational collapse, their masses can be far below stellar mass (c. 2×1030 kg).

Hughes–Drever experiment

Hughes–Drever experiments are spectroscopic tests of the isotropy of mass and space. Although originally conceived of as a test of Mach's principle, they are now understood to be an important test of Lorentz invariance. As in Michelson–Morley experiments, the existence of a preferred frame of reference or other deviations from Lorentz invariance can be tested, which also affects the validity of the equivalence principle. Thus these experiments concern fundamental aspects of both special and general relativity. Unlike Michelson–Morley type experiments, Hughes–Drever experiments test the isotropy of the interactions of matter itself, that is, of protons, neutrons, and electrons. The accuracy achieved makes this kind of experiment one of the most accurate confirmations of relativity .

Tsvi Piran Israeli theoretical physicist and astrophysicist (born 1949)

Tsvi Piran is an Israeli theoretical physicist and astrophysicist, best known for his work on Gamma-ray Bursts (GRBs) and on numerical relativity. The recipient of the 2019 EMET prize award in Physics and Space Research.

Double copy theory is a theory in theoretical physics, specifically in quantum gravity, that hypothesizes a perturbative duality between gauge theory and gravity. The theory says that scattering amplitudes in non-Abelian gauge theories can be factorized such that replacement of the color factor by additional kinematic dependence factor, in a well-defined way, automatically leads to gravity scattering amplitudes. It was first written down by Zvi Bern, John Joseph Carrasco and Henrik Johansson in 2010 and was sometimes known as the BCJ duality after its creators or as "gravity = gauge x gauge".

Aron Pinczuk was an Argentine-American experimental condensed matter physicist who was professor of physics and professor of applied physics at Columbia University. He was known for his work on correlated electronic states in two dimensional systems using photoluminescence and resonant inelastic light scattering methods. He was a fellow of the American Physical Society, the American Association for the Advancement of Science and the American Academy of Arts and Sciences.

Eric George Adelberger is an American experimental nuclear physicist and gravitational metrologist.

References

  1. Sam Dolan (24 July 2017). "Viewpoint: Spinning Black Holes May Grow Hair". Physical Review Letters. American Physical Society.
  2. Hamish Johnston (27 July 2017). "Spinning black holes could grow long hair". Physics World.

Further reading