An illusion is a distortion of the senses, which can reveal how the mind normally organizes and interprets sensory stimulation. Although illusions distort the human perception of reality, they are generally shared by most people. [1]
Illusions may occur with any of the human senses, but visual illusions (optical illusions) are the best-known and understood. The emphasis on visual illusions occurs because vision often dominates the other senses. For example, individuals watching a ventriloquist will perceive the voice is coming from the dummy since they are able to see the dummy mouth the words. [2]
Some illusions are based on general assumptions the brain makes during perception. These assumptions are made using organizational principles (e.g., Gestalt theory), an individual's capacity for depth perception and motion perception, and perceptual constancy. Other illusions occur due to biological sensory structures within the human body or conditions outside the body within one's physical environment.
The term illusion refers to a specific form of sensory distortion. Unlike a hallucination, which is a distortion in the absence of a stimulus, an illusion describes a misinterpretation of a true sensation. For example, hearing voices regardless of the environment would be a hallucination, whereas hearing voices in the sound of running water (or another auditory source) would be an illusion. So, it should not be wrong to consider that illusions are just "misinterpretations" on how our brain perceives something that exists (unlike a hallucination where a stimulus is absent).
A visual illusion or optical illusion is characterized by visually perceived images that are deceptive or misleading. Therefore, the information gathered by the visual sense is processed to create a percept that does not tally with information from other senses or physical measurements. [3]
The visual system, which includes the eyes (namely the retinas) and the central nervous system (namely the brain's visual cortex), constructs reality through both perceptual and cognitive neural pathways. Visual illusions are (at least in part) thought to be caused by excessive competing stimuli. Each stimulus follows a dedicated neural path in the early stages of visual processing, and intense/repetitive activity or interaction with active adjoining channels (perceptual neural circuits, usually at the same level) causes a physiological imbalance that alters perception. During low-level visual processing, the retinal circuit arranges the information in the photoreceptors, by creating initial visual percepts from the patterns of light which fall on the retina. The Hermann grid illusion and Mach bands are two illusions that are widely considered to be caused by a biological phenomenon named lateral inhibition, where the receptor signal in the retina's receptive fields from light and dark areas compete with one another. [4]
The assembly of visual elements into a collective percept, that distinguishes objects from backgrounds, takes part during intermediate-level visual processing. Many common visual illusions are a consequence of the percept constructed during this processing stage, as the elements first captured during low-level processing might easily be interpreted to form an image that differs from objective reality. An example is when two objects of the same size are placed on a certain background which conditions us to believe that one object might be larger than the other, and when the background is removed or replaced our perception immediately changes to the correct scenario (effectively concluding that both objects have equal dimensions). [4]
High-level visual processing consolidates information gathered from various sources to apply cognitive influences that create a conscious visual experience. Thus, allowing us to recognize the complex identity of different elements, and the disparate relations between them through cognitive processes. Visual illusions are also often a product of this processing stage, and it is during this stage that we might ultimately become conscious of any optical illusion. There are two crucial properties of our visual system related mostly to high-level visual processing, referred to as selectivity and invariance (which we have consistently attempted to replicate in image recognition computer algorithms). Selectivity refers to the identification of particular features that are relevant to recognize a specific element or object, while abstracting from other features that are not fundamental to performing the same recognition (e.g. when we see the shape of a house, certain contours that are essential for us to recognize it while other contours or image properties are not, such as color). On the other hand, invariance refers to the ability to be indifferent to small variations of a given feature, effectively identifying all those variations as simply being different versions of the same feature (e.g. we can recognize a given handwritten letter of the alphabet, written by different people with distinct styles of calligraphy). [4]
The whole process that constructs our visual experience is extremely complex (with multiple qualities that are unmatched by any computer or digital system). It is organized by many sequential and parallel sub-processes, each of which is essential in building our conscious image of the world. Our whole visual system seeks to simplify and categorize the unstructured low-level visual information, through both selectivity and invariance. Thus, while trying to organize an image by "filling in the gaps" through assumptions, we become vulnerable to misinterpretation. [5] [6]
An auditory illusion is an illusion of hearing, the auditory equivalent of a visual illusion: the listener hears either sound which are not present in the stimulus, or "impossible" sounds. In short, audio illusions highlight areas where the human ear and brain, as organic, makeshift tools, differ from perfect audio receptors (for better or for worse). One example of an auditory illusion is a Shepard tone.
Examples of tactile illusions include phantom limb, the thermal grill illusion, the cutaneous rabbit illusion and a curious illusion that occurs when the crossed index and middle fingers are run along the bridge of the nose with one finger on each side, resulting in the perception of two separate noses. The brain areas activated during illusory tactile perception are similar to those activated during actual tactile stimulation. [7] Tactile illusions can also be elicited through haptic technology. [8] These "illusory" tactile objects can be used to create "virtual objects". [9]
A temporal illusion is a distortion in the perception of time, which occurs when the time interval between two or more events is very narrow (typically less than a second). In such cases, a person may momentarily perceive time as slowing down, stopping, speeding up, or running backward.
Illusions can occur with the other senses including those involved in food perception. Both sound [10] and touch [11] have been shown to modulate the perceived staleness and crispness of food products. It was also discovered that even if some portion of the taste receptor on the tongue became damaged that illusory taste could be produced by tactile stimulation. [12] Evidence of olfactory (smell) illusions occurred when positive or negative verbal labels were given prior to olfactory stimulation. [13] The McGurk effect shows that what we hear is influenced by what we see as we hear the person speaking; when the auditory component of one sound is paired with the visual component of another sound, leading to the perception of a third sound. [14]
Some illusions occur as a result of an illness or a disorder. While these types of illusions are not shared with everyone, they are typical of each condition. For example, people with migraines often report fortification illusions.[ citation needed ]
Perception is linked to specific brain activity and so can be elicited by brain stimulation. The (illusory) percepts that can be evoked range from simple phosphenes (detections of lights in the visual field) to high-level percepts. [15] In a single-case study on a patient undergoing presurgical evaluation for epilepsy treatment, electrical stimulation at the left temporo-parietal junction evoked the percept of a nearby (illusory) person who "closely 'shadowed' changes in the patient's body position and posture". [16] [17]
The philosophy of perception is concerned with the nature of perceptual experience and the status of perceptual data, in particular how they relate to beliefs about, or knowledge of, the world. Any explicit account of perception requires a commitment to one of a variety of ontological or metaphysical views. Philosophers distinguish internalist accounts, which assume that perceptions of objects, and knowledge or beliefs about them, are aspects of an individual's mind, and externalist accounts, which state that they constitute real aspects of the world external to the individual. The position of naïve realism—the 'everyday' impression of physical objects constituting what is perceived—is to some extent contradicted by the occurrence of perceptual illusions and hallucinations and the relativity of perceptual experience as well as certain insights in science. Realist conceptions include phenomenalism and direct and indirect realism. Anti-realist conceptions include idealism and skepticism. Recent philosophical work have expanded on the philosophical features of perception by going beyond the single paradigm of vision.
Perception is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system. Vision involves light striking the retina of the eye; smell is mediated by odor molecules; and hearing involves pressure waves.
A hallucination is a perception in the absence of an external stimulus that has the qualities of a real perception. Hallucinations are vivid, substantial, and are perceived to be located in external objective space. Hallucination is a combination of two conscious states of brain wakefulness and REM sleep. They are distinguishable from several related phenomena, such as dreaming, which does not involve wakefulness; pseudohallucination, which does not mimic real perception, and is accurately perceived as unreal; illusion, which involves distorted or misinterpreted real perception; and mental imagery, which does not mimic real perception, and is under voluntary control. Hallucinations also differ from "delusional perceptions", in which a correctly sensed and interpreted stimulus is given some additional significance.
In visual perception, an optical illusion is an illusion caused by the visual system and characterized by a visual percept that arguably appears to differ from reality. Illusions come in a wide variety; their categorization is difficult because the underlying cause is often not clear but a classification proposed by Richard Gregory is useful as an orientation. According to that, there are three main classes: physical, physiological, and cognitive illusions, and in each class there are four kinds: Ambiguities, distortions, paradoxes, and fictions. A classical example for a physical distortion would be the apparent bending of a stick half immerged in water; an example for a physiological paradox is the motion aftereffect. An example for a physiological fiction is an afterimage. Three typical cognitive distortions are the Ponzo, Poggendorff, and Müller-Lyer illusion. Physical illusions are caused by the physical environment, e.g. by the optical properties of water. Physiological illusions arise in the eye or the visual pathway, e.g. from the effects of excessive stimulation of a specific receptor type. Cognitive visual illusions are the result of unconscious inferences and are perhaps those most widely known.
A tactile illusion is an illusion that affects the sense of touch. Some tactile illusions require active touch, whereas others can be evoked passively. In recent years, a growing interest among perceptual researchers has led to the discovery of new tactile illusions and to the celebration of tactile illusions in the popular science press. Some tactile illusions are analogous to visual and auditory illusions, suggesting that these sensory systems may process information in similar ways; other tactile illusions don't have obvious visual or auditory analogs.
Stimulus modality, also called sensory modality, is one aspect of a stimulus or what is perceived after a stimulus. For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light, sound, temperature, taste, pressure, and smell. The type and location of the sensory receptor activated by the stimulus plays the primary role in coding the sensation. All sensory modalities work together to heighten stimuli sensation when necessary.
Multisensory integration, also known as multimodal integration, is the study of how information from the different sensory modalities may be integrated by the nervous system. A coherent representation of objects combining modalities enables animals to have meaningful perceptual experiences. Indeed, multisensory integration is central to adaptive behavior because it allows animals to perceive a world of coherent perceptual entities. Multisensory integration also deals with how different sensory modalities interact with one another and alter each other's processing.
Sensory substitution is a change of the characteristics of one sensory modality into stimuli of another sensory modality.
Sensory processing is the process that organizes and distinguishes sensation from one's own body and the environment, thus making it possible to use the body effectively within the environment. Specifically, it deals with how the brain processes multiple sensory modality inputs, such as proprioception, vision, auditory system, tactile, olfactory, vestibular system, interoception, and taste into usable functional outputs.
Troxler's fading, also called Troxler fading or the Troxler effect, is an optical illusion affecting visual perception. When one fixates on a particular point for even a short period of time, an unchanging stimulus away from the fixation point will fade away and disappear. Research suggests that at least some portion of the perceptual phenomena associated with Troxler's fading occurs in the brain.
In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its neighbors. Lateral inhibition disables the spreading of action potentials from excited neurons to neighboring neurons in the lateral direction. This creates a contrast in stimulation that allows increased sensory perception. It is also referred to as lateral antagonism and occurs primarily in visual processes, but also in tactile, auditory, and even olfactory processing. Cells that utilize lateral inhibition appear primarily in the cerebral cortex and thalamus and make up lateral inhibitory networks (LINs). Artificial lateral inhibition has been incorporated into artificial sensory systems, such as vision chips, hearing systems, and optical mice. An often under-appreciated point is that although lateral inhibition is visualised in a spatial sense, it is also thought to exist in what is known as "lateral inhibition across abstract dimensions." This refers to lateral inhibition between neurons that are not adjacent in a spatial sense, but in terms of modality of stimulus. This phenomenon is thought to aid in colour discrimination.
A sensory cue is a statistic or signal that can be extracted from the sensory input by a perceiver, that indicates the state of some property of the world that the perceiver is interested in perceiving.
The cutaneous rabbit illusion is a tactile illusion evoked by tapping two or more separate regions of the skin in rapid succession. The illusion is most readily evoked on regions of the body surface that have relatively poor spatial acuity, such as the forearm. A rapid sequence of taps delivered first near the wrist and then near the elbow creates the sensation of sequential taps hopping up the arm from the wrist towards the elbow, although no physical stimulus was applied between the two actual stimulus locations. Similarly, stimuli delivered first near the elbow then near the wrist evoke the illusory perception of taps hopping from elbow towards wrist. The illusion was discovered by Frank Geldard and Carl Sherrick of Princeton University, in the early 1970s, and further characterized by Geldard (1982) and in many subsequent studies. Geldard and Sherrick likened the perception to that of a rabbit hopping along the skin, giving the phenomenon its name. While the rabbit illusion has been most extensively studied in the tactile domain, analogous sensory saltation illusions have been observed in audition and vision. The word "saltation" refers to the leaping or jumping nature of the percept.
Extinction is a neurological disorder that impairs the ability to perceive multiple stimuli of the same type simultaneously. Extinction is usually caused by damage resulting in lesions on one side of the brain. Those who are affected by extinction have a lack of awareness in the contralesional side of space and a loss of exploratory search and other actions normally directed toward that side.
A sense is a biological system used by an organism for sensation, the process of gathering information about the surroundings through the detection of stimuli. Although, in some cultures, five human senses were traditionally identified as such, many more are now recognized. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli for transduction, meaning transformation into a form that can be understood by the brain. Sensation and perception are fundamental to nearly every aspect of an organism's cognition, behavior and thought.
In psychology, visual capture is the dominance of vision over other sense modalities in creating a percept. In this process, the visual senses influence the other parts of the somatosensory system, to result in a perceived environment that is not congruent with the actual stimuli. Through this phenomenon, the visual system is able to disregard what other information a different sensory system is conveying, and provide a logical explanation for whatever output the environment provides. Visual capture allows one to interpret the location of sound as well as the sensation of touch without actually relying on those stimuli but rather creating an output that allows the individual to perceive a coherent environment.
Chronostasis is a type of temporal illusion in which the first impression following the introduction of a new event or task-demand to the brain can appear to be extended in time. For example, chronostasis temporarily occurs when fixating on a target stimulus, immediately following a saccade. This elicits an overestimation in the temporal duration for which that target stimulus was perceived. This effect can extend apparent durations by up to half a second and is consistent with the idea that the visual system models events prior to perception.
Geometrical–optical are visual illusions, also optical illusions, in which the geometrical properties of what is seen differ from those of the corresponding objects in the visual field.
Multistable auditory perception is a cognitive phenomenon in which certain auditory stimuli can be perceived in multiple ways. While multistable perception has been most commonly studied in the visual domain, it also has been observed in the auditory and olfactory modalities. In the olfactory domain, different scents are piped to the two nostrils, while in the auditory domain, researchers often examine the effects of binaural sequences of pure tones. Generally speaking, multistable perception has three main characteristics: exclusivity, implying that the multiple perceptions cannot simultaneously occur; randomness, indicating that the duration of perceptual phases follows a random law, and inevitability, meaning that subjects are unable to completely block out one percept indefinitely.
Interindividual differences in perception describes the effect that differences in brain structure or factors such as culture, upbringing and environment have on the perception of humans. Interindividual variability is usually regarded as a source of noise for research. However, in recent years, it has become an interesting source to study sensory mechanisms and understand human behavior. With the help of modern neuroimaging methods such as fMRI and EEG, individual differences in perception could be related to the underlying brain mechanisms. This has helped to explain differences in behavior and cognition across the population. Common methods include studying the perception of illusions, as they can effectively demonstrate how different aspects such as culture, genetics and the environment can influence human behavior.