Barberpole illusion

Last updated
An example of the barberpole illusion. The grating is actually drifting downwards and to the right at 45 degrees, but its motion is captured by the elongated axis of the aperture. Barberpole illusion animated.gif
An example of the barberpole illusion. The grating is actually drifting downwards and to the right at 45 degrees, but its motion is captured by the elongated axis of the aperture.

The barberpole illusion is a visual illusion that reveals biases in the processing of visual motion in the human brain. This visual illusion occurs when a diagonally striped pole is rotated around its vertical axis (horizontally), it appears as though the stripes are moving in the direction of its vertical axis (downwards in the case of the animation to the right) [1] rather than around it. [2]

Contents

History

The barber's pole is commonly found outside barber shops. Barber-pole-01.gif
The barber's pole is commonly found outside barber shops.

In 1929, psychologist J.P. Guilford informally noted a paradox in the perceived motion of stripes on a rotating barber pole. The barber pole turns in place on its vertical axis, but the stripes appear to move upwards rather than turning with the pole. [3] Guilford tentatively attributed the phenomenon to eye movements, but acknowledged the absence of data on the question.

In 1935, Hans Wallach published a comprehensive series of experiments related to this topic, [4] but since the article was in German it was not immediately known to English-speaking researchers. An English summary of the research was published in 1976 [5] and a complete English translation of the 1935 paper was published in 1996. [6] Wallach's analysis focused on the interaction between the terminal points of the diagonal lines and the implicit aperture created by the edges of the pole.

Explanation

In this example the motion of the grating is identical to that in example 1, but the aperture is isotropic. Aperture problem animated.gif
In this example the motion of the grating is identical to that in example 1, but the aperture is isotropic.

This illusion occurs because a bar or contour within a frame of reference provides ambiguous information about its "real" direction of movement. The actual motion of the line has many possibilities. The shape of the aperture thus tends to determine the perceived direction of motion for an otherwise identically moving contour. A vertically elongated aperture makes vertical motion dominant whereas a horizontally elongated aperture makes horizontal motion dominant. In the case of a circular or square aperture, the perceived direction of movement is usually orthogonal to the orientation of the stripes (diagonal, in this case). The perceived direction of movement relates to the termination of the line's end points within the inside border of the occluder. The vertical aperture, for instance, has longer edges at the vertical orientation, creating a larger number of terminators unambiguously moving vertically. This stronger motion signal forces us to perceive vertical motion. Functionally, this mechanism has evolved to ensure that we perceive a moving pattern as a rigid surface moving in one direction. [7]

Individual motion-sensitive neurons in the visual system have only limited information, as they see only a small portion of the visual field (a situation referred to as the "aperture problem"). In the absence of additional information the visual system prefers the slowest possible motion: i.e., motion orthogonal to the moving line. [8] The neurons which may correspond to perceiving barber-pole-like patterns have been identified in the visual cortex of ferrets. [9]

Auditory analogue

A similar effect occurs in the Shepard's tone, which is an auditory illusion. [1] [2]

See also

Related Research Articles

<span class="mw-page-title-main">Rotation</span> Movement of an object around an axis

Rotation or rotational motion is the circular movement of an object around a central line, known as axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation. A solid figure has an infinite number of possible axes and angles of rotation, including chaotic rotation, in contrast to rotation around a fixed axis.

An illusion is a distortion of the senses, which can reveal how the mind normally organizes and interprets sensory stimulation. Although illusions distort the human perception of reality, they are generally shared by most people.

<span class="mw-page-title-main">Optical illusion</span> Visually perceived images that differ from objective reality

In visual perception, an optical illusion is an illusion caused by the visual system and characterized by a visual percept that arguably appears to differ from reality. Illusions come in a wide variety; their categorization is difficult because the underlying cause is often not clear but a classification proposed by Richard Gregory is useful as an orientation. According to that, there are three main classes: physical, physiological, and cognitive illusions, and in each class there are four kinds: Ambiguities, distortions, paradoxes, and fictions. A classical example for a physical distortion would be the apparent bending of a stick half immerged in water; an example for a physiological paradox is the motion aftereffect. An example for a physiological fiction is an afterimage. Three typical cognitive distortions are the Ponzo, Poggendorff, and Müller-Lyer illusion. Physical illusions are caused by the physical environment, e.g. by the optical properties of water. Physiological illusions arise in the eye or the visual pathway, e.g. from the effects of excessive stimulation of a specific receptor type. Cognitive visual illusions are the result of unconscious inferences and are perhaps those most widely known.

<span class="mw-page-title-main">Depth perception</span> Visual ability to perceive the world in 3D

Depth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions. Depth perception happens primarily due to stereopsis and accommodation of the eye.

<span class="mw-page-title-main">Motion perception</span> Inferring the speed and direction of objects

Motion perception is the process of inferring the speed and direction of elements in a scene based on visual, vestibular and proprioceptive inputs. Although this process appears straightforward to most observers, it has proven to be a difficult problem from a computational perspective, and difficult to explain in terms of neural processing.

<span class="mw-page-title-main">Barber's pole</span> Type of sign

A barber's pole is a type of sign used by barbers to signify the place or shop where they perform their craft. The trade sign is, by a tradition dating back to the Middle Ages, a staff or pole with a helix of colored stripes. The pole may be stationary or may rotate, often with the aid of an electric motor.

<span class="mw-page-title-main">Motion aftereffect</span> Optical illusion

The motion aftereffect (MAE) is a visual illusion experienced after viewing a moving visual stimulus for a time with stationary eyes, and then fixating a stationary stimulus. The stationary stimulus appears to move in the opposite direction to the original stimulus. The motion aftereffect is believed to be the result of motion adaptation.

The kappa effect or perceptual time dilation is a temporal perceptual illusion that can arise when observers judge the elapsed time between sensory stimuli applied sequentially at different locations. In perceiving a sequence of consecutive stimuli, subjects tend to overestimate the elapsed time between two successive stimuli when the distance between the stimuli is sufficiently large, and to underestimate the elapsed time when the distance is sufficiently small.

Akinetopsia, also known as cerebral akinetopsia or motion blindness, is a term introduced by Semir Zeki to describe an extremely rare neuropsychological disorder, having only been documented in a handful of medical cases, in which a patient cannot perceive motion in their visual field, despite being able to see stationary objects without issue. The syndrome is the result of damage to visual area V5, whose cells are specialized to detect directional visual motion. There are varying degrees of akinetopsia: from seeing motion as frames of a cinema reel to an inability to discriminate any motion. There is currently no effective treatment or cure for akinetopsia.

<span class="mw-page-title-main">Lateral inhibition</span> Capacity of an excited neuron to reduce activity of its neighbors

In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its neighbors. Lateral inhibition disables the spreading of action potentials from excited neurons to neighboring neurons in the lateral direction. This creates a contrast in stimulation that allows increased sensory perception. It is also referred to as lateral antagonism and occurs primarily in visual processes, but also in tactile, auditory, and even olfactory processing. Cells that utilize lateral inhibition appear primarily in the cerebral cortex and thalamus and make up lateral inhibitory networks (LINs). Artificial lateral inhibition has been incorporated into artificial sensory systems, such as vision chips, hearing systems, and optical mice. An often under-appreciated point is that although lateral inhibition is visualised in a spatial sense, it is also thought to exist in what is known as "lateral inhibition across abstract dimensions." This refers to lateral inhibition between neurons that are not adjacent in a spatial sense, but in terms of modality of stimulus. This phenomenon is thought to aid in colour discrimination.

<span class="mw-page-title-main">Kinetic depth effect</span> Phenomenon of visual perception

In visual perception, the kinetic depth effect refers to the phenomenon whereby the three-dimensional structural form of an object can be perceived when the object is moving. In the absence of other visual depth cues, this might be the only perception mechanism available to infer the object's shape. Being able to identify a structure from a motion stimulus through the human visual system was shown by Hans Wallach and O'Connell in the 1950s through their experiments.

Stuart M. Anstis is a professor emeritus of psychology at the University of California, San Diego, in the United States.

<span class="mw-page-title-main">Spinning dancer</span> Optical illusion

The Spinning Dancer, also known as the Silhouette Illusion, is a kinetic, bistable, animated optical illusion originally distributed as a GIF animation showing a silhouette of a pirouetting female dancer. The illusion, created in 2003 by Japanese web designer Nobuyuki Kayahara, involves the apparent direction of motion of the figure. Some observers initially see the figure as spinning clockwise and some counterclockwise. Additionally, some may see the figure suddenly spin in the opposite direction.

<span class="mw-page-title-main">Illusions of self-motion</span> Misperception of ones location or movement

Illusions of self-motion occur when one perceives bodily motion despite no movement taking place. One can experience illusory movements of the whole body or of individual body parts, such as arms or legs.

Oblique effect is the name given to the relative deficiency in perceptual performance for oblique contours as compared to the performance for horizontal or vertical contours.

<span class="mw-page-title-main">Visual tilt effects</span>

Due to the effect of a spatial context or temporal context, the perceived orientation of a test line or grating pattern can appear tilted away from its physical orientation. The tilt illusion (TI) is the phenomenon that the perceived orientation of a test line or grating is altered by the presence of surrounding lines or grating with a different orientation. And the tilt aftereffect (TAE) is the phenomenon that the perceived orientation is changed after prolonged inspection of another oriented line or grating.

<span class="mw-page-title-main">Hans Wallach</span>

Hans Wallach was a German-American experimental psychologist whose research focused on perception and learning. Although he was trained in the Gestalt psychology tradition, much of his later work explored the adaptability of perceptual systems based on the perceiver's experience, whereas most Gestalt theorists emphasized inherent qualities of stimuli and downplayed the role of experience. Wallach's studies of achromatic surface color laid the groundwork for subsequent theories of lightness constancy, and his work on sound localization elucidated the perceptual processing that underlies stereophonic sound. He was a member of the National Academy of Sciences, a Guggenheim Fellow, and recipient of the Howard Crosby Warren Medal of the Society of Experimental Psychologists.

Biological motion perception is the act of perceiving the fluid unique motion of a biological agent. The phenomenon was first documented by Swedish perceptual psychologist, Gunnar Johansson, in 1973. There are many brain areas involved in this process, some similar to those used to perceive faces. While humans complete this process with ease, from a computational neuroscience perspective there is still much to be learned as to how this complex perceptual problem is solved. One tool which many research studies in this area use is a display stimuli called a point light walker. Point light walkers are coordinated moving dots that simulate biological motion in which each dot represents specific joints of a human performing an action.

Interindividual differences in perception describes the effect that differences in brain structure or factors such as culture, upbringing and environment have on the perception of humans. Interindividual variability is usually regarded as a source of noise for research. However, in recent years, it has become an interesting source to study sensory mechanisms and understand human behavior. With the help of modern neuroimaging methods such as fMRI and EEG, individual differences in perception could be related to the underlying brain mechanisms. This has helped to explain differences in behavior and cognition across the population. Common methods include studying the perception of illusions, as they can effectively demonstrate how different aspects such as culture, genetics and the environment can influence human behavior.

<span class="mw-page-title-main">Stepping feet illusion</span>

The stepping feet illusion is a motion perception phenomenon involving two "buses," one blue and one yellow, moving horizontally across a "street" consisting of black and white stripes. Although both of the buses move at a constant speed, their perceived speed varies dramatically.

References

Notes

  1. 1 2 "Barber Pole Illusion". sandlotscience.com. Archived from the original on 28 November 2010. Retrieved November 14, 2010.
  2. 1 2 Massaro, Dominic W., ed. (Spring 2007). "Book Reviews: What Are Musical Paradox and Illusion?" (PDF). American Journal of Psychology . 120 (1). University of California, Santa Cruz: 123–170, 124, 132.
  3. Guilford, J. P. (October 1929). "Illusory Movement from a Rotating Barber Pole". The American Journal of Psychology. 41 (4): 686. doi:10.2307/1414763.
  4. Wallach, H. (1935). "Ueber visuell wahrgenommene Bewegungsrichtung". Psychologische Forschung. 20: 325–380. doi:10.1007/bf02409790. S2CID   145400184.
  5. Wallach, Hans (1976). "IX.1". On perception. New York: Quadrangle/New York Times Book Co. ISBN   978-0-8129-0480-2.
  6. Wuerger, Sophie; Shapley, Robert; Rubin, Nava (November 1996). ""On the Visually Perceived Direction of Motion" by Hans Wallach: 60 Years Later". Perception. 25 (11): 1317–1367. doi:10.1068/p251317. ISSN   0301-0066.
  7. Todorović, Dejan (2002). "A new variant of the barberpole effect: Psycholphysical data and computer simulations" (PDF). Psihologija. 35 (3–4). Serbia, Yugoslavia: Laboratory for Experimental Psychology, University of Belgrade: 209–223 UDC 159.937.075. doi: 10.2298/psi0203209t . Archived from the original (PDF) on July 23, 2011. Retrieved November 26, 2010.
  8. Hoffman, Donald D. (2000). Visual intelligence: how we create what we see (1. publ ed.). New York, NY London: Norton. ISBN   978-0-393-31967-5.
  9. Lees, Kevin (July 15, 2003). "Rethinking How the Brain Sees Visual Features: Duke neurobiologists study brain's visual-processing region". Duke News. Durham, North Carolina: Duke University. Archived from the original on July 26, 2010. Retrieved December 14, 2010.