Chubb illusion

Last updated
Figure 1: An example of the Chubb illusion. The center areas of two rectangular fields are identical, but appear different because the background fields are different. Chubbillusion.gif
Figure 1: An example of the Chubb illusion. The center areas of two rectangular fields are identical, but appear different because the background fields are different.

The Chubb illusion is an optical illusion or error in visual perception in which the apparent contrast of an object varies substantially to most viewers depending on its relative contrast to the field on which it is displayed. [1] These visual illusions are of particular interest to researchers because they may provide valuable insights in regard to the workings of human visual systems.

Contents

An object of low-contrast visual texture surrounded by a field of uniform visual texture appears to have higher contrast than when presented on a field of high-contrast texture. This illusion was observed by Charles Chubb and colleagues and published in 1989. [2] An empirical explanation of the Chubb illusion was published by Lotto and Purves in 2001. [1]

Discovery

Figure 2: Illustration of simultaneous contrast Simultaneous contrast.png
Figure 2: Illustration of simultaneous contrast

Chubb and his colleagues researched this illusion by showing various combinations of foreground objects and background fields to human test subjects and asking them to rate the sharpness of the visual contrast in each foreground object. They found that subjects viewing a patch of random visual texture embedded in a surrounding background field were likely to report different perceptions of visual contrast for the central target patch depending on the relative contrast of the background field. Furthermore, the apparent brightness/ dullness of a texture patch varied as the background varied. E.g. bright points of texture patch appeared duller in a high-contrast background, whereas dark points appeared lighter in an even background. [2] This apparent variance in perception is influenced when it is viewed by different observers and when the background and central target patch are placed on "non-overlapping spatial frequency bands", as explained by Chubb et al. This tendency was found statistically significant. Theories point to a perceptual tool to catalyse contrast adaptation (slow, seconds) to contrast gain control (fast,≈100ms) at an early cortical or pre-cortical 'neural locus'. [3] [2]

Chubb contrast effect

The Chubb illusion is similar to another visual illusion, the contrast effect. The contrast effect is an illusion in which the perceived brightness or luminance of an identical central visual target form on a larger uniform background varies to the test subject depending on the ratio of the central form's luminance to that of its background. [4] This illusion, simultaneous contrast, is illustrated in Figure 2. In it, the central target is brighter. I.e., the ratio of the top central rectangle's luminance (A) to its background field's luminance is greater than one. In the bottom rectangle (B), the background field is brighter. That is, the ratio is less than one. [2] Although the two central target patches are equally bright (identical in luminance) the one on a dark background appears lighter and the one on a lighter background appears darker.

Lateral inhibition

Lateral inhibition is one proposal to explain the contrast illusion or simultaneous contrast. Its advocates theorize that neurons strongly stimulated by the background of B suppress the less strongly stimulated neurons of the interior rectangle. [2] In A, they theorize, there is no such inhibition. However, the fact that both A and B appear of "uniform lightness across their expanse" suggests that the process of lateral inhibition is more complex. [5] Chubb et al. assert that the principle of lateral inhibition rests on the assumption that the determining factor of perceived lightness is the ratio, at the rectangle edge, of rectangle luminance to background luminance. [2] However, the lateral inhibition account is not consistent with phenomena such as the Benary cross and White's illusion as well as transparency and assimilation effects. As such, it is an ad hoc explanation of unclear theoretical interest.

The Chubb illusion illustrates an error in contrast rather than luminance. The zero-luminance background of Figure 2 (A) becomes a zero-contrast field in the analogous portion of Figure 1, while the high-luminance field of Figure 2 (B) becomes a high-contrast texture field. Observers empirically perceive the texture disk of the leftmost portion of Figure 1 as having higher contrast than the disk on the right, even though the two are the same. After conducting experiments on contrast and lightness induction, interocular induction and induction between spatial frequency bands, they show that lateral inhibitory effect is monocular and adapted only for spatial frequency. Chubb et al. support "a model in which the output gain of such a band-selective neuron is normalized relative to the average response amplitude of nearby neurons with the same frequency tuning." [2]

Imperfect transmittance

Figure 3: The Chubb Illusion Lotto and Purves.png
Figure 3: The Chubb Illusion

Visual perceptions are dependent on the interaction of the human visual system with any bi-stable or multi-stable stimuli and the frequency of its occurrence. The lighting of objects at a point, the reflectance of those objects and the transmittance of media between the object and observer is central to determining the primary factors that affect our visual perception. [1] It is due to this that a low contrast image is perceived to be of a higher contrast when placed in front of a grey background. The grey background is more ambiguous than the high contrast background. Lotto and Purves (2001) demonstrated that the Chubb illusion can be explained "by the degree to which imperfect transmittance is likely to have affected the light that reaches the eye." [1] Indeed, these observations suggest a wholly empirical explanation of the Chubb illusion. [6]

Chubb effect estimates that when an object is viewed through an imperfectly transmitting medium, it increases or decreases the apparent brightness or dullness of the target patch, even when luminance ratios and spatial frequencies remain the same. [1] Lotto and Purves (2001) doubted that illusory perceptions of brightness were explained as consequences of lateral inhibition. [2] [7] If that were the case, the perceived difference in brightness of target elements, illustrated in Figure 3 (A), would be largely unaffected by the surrounding field in Figure 3 (C), which exhibits lower spatial contrast than the target, which matches the observations. Despite this, they asserted, "this reasoning is undermined by the fact that the apparent contrast by the target pattern in Figure 3 (D) is mostly unaffected by the surround of Figure 3 (F)." Therefore, they chose to examine the Chubb illusion in 'wholly empirical' terms, as mainly a consequence of past experience, or in this case, the influence of transmittance on ambiguous stimuli. [1]

The common denominator of the Lotto and Purves observations is the explanatory power of imperfect transmittance. [1] Imperfect transmittance causes observers to experience a reduced difference in spectral contrast or luminance from object surfaces. [1] [8] This is because imperfections in the transmission medium produce, such as atmospheric effects distort transmittance. For instance, transmittance varies when viewing objects from a distance, in smog or fog, or through fabric, glass or water. These conditions greatly effect the amount of light that reaches the eye. This hypothesis was tested by altering the probable contributions of imperfect transmittance by manipulating motion, luminance and colour information. In some cases, the relative luminance of two target surfaces can be reduced, as Lotto and Purves demonstrate, from a ratio of 8:3 to approximately 7:5. If perception is generated empirically, then "the extent that a stimulus is consistent with imperfect transmittance...will be incorporated into the perception of the target." [1]

Appropriate behavioural response depends on the evaluation of the relative contributions of illumination, reflectance and transmittance to the visual stimuli. Visual perceptions of contrast are affected by the effects of imperfect transmittance rather than the luminance of the object. [1] The Chubb stimulus illustrated in Figure 1 (B) is consistent with transmittance distortions for two reasons: the patterned elements of the background are continuous with the patterned elements of the target and the luminances of the target elements accord with the values that would arise if the background pattern were viewed through an imperfectly transmitting medium. [1]

The transmittance explanation of the Chubb illusion asserts that changing the stimulus in Figure 1 (B) in a way that makes it less consistent with viewing through an imperfect medium should decrease, or reverse, the illusion. Trials confirm this hypothesis. This explanation throws into doubt the hypothesis that implies that altering luminance, motion, or spectral distribution of the field surrounding the target would not alter perception. [1]

The empirical findings also contradict the hypothesis that 'illusions of brightness' caused by contour junctions in the stimulus explain the Chubb illusion, as proposed by Anderson (1997). [1] [9]

Chubb illusions in predicting schizophrenia

Visual illusions can be categorised into physiological/pathological, perceptual and ambiguous (bistable/multistable). A deviation from the natural perception of objects (stimulus) encourages evaluation of the theories of perception. [10] Visual perception in schizophrenia is distinguished by reduced contextual adjustments and a more accurate perception of the stimulus in tasks involving 'spatial contextual effects'. [11] According to Eunice et al., "contextual illusions arise from vision's adaptive propensity to emphasize relative differences among features rather than their absolute characteristics." [11] While the presence of a high-contrast background reduces the apparent contrast of smaller foreground features in healthy individuals, schizophrenic patients are more accurate in perceiving the contrast between the background and foreground. In order to test this, Keane et al. measured the performance of 15 participants with chronic schizophrenia, 13 psychiatric participants- including individuals with personality and bipolar disorders and 20 non-psychiatric healthy individuals. They were presented with a small isolated target patch or a small patch with a high contrast background, followed by a remote reference patch. The individuals were then asked to note which patch they thought was higher in contrast based on their observations. [12]

The schizophrenic group's immunity to contrast illusion was exceptional, with 12 out of 15 accurate judgements while healthy participants showed severe misperceptions of the centre stimuli. This shows that individuals with schizophrenia are able to perceive 'absolute characteristics' of 'individual features' more accurately. [12] While contextual modulations with regard to luminance, size and orientation were similar between groups, weak contextual modulations correlate with worse symptoms and social functioning. [13] [11]

Visual defects in schizophrenia can lead to cognitive and social problems. [11] Findings of enhanced performance help us ascertain the latent visual abnormalities. Indeed, there has been a rapid growth in the use of contextual visual tasks (Chubb illusions) in clinical testing and NIH-supported studies of schizophrenia. (Gold et al., 2012). [11]

Old age

There is a reduction of the cortical inhibitory function within the ageing visual system, both in humans and animals. This reduction in inhibition accounts for a reduced orientation and direction tuning of aged visual neurons. L.R. Betts et al. (2005) demonstrated that older people were able to distinguish the motion of high-contrast stimuli quicker than younger adults, and that inhibition was responsible for differences in spatial suppression. [14] Karas and McKendrick (2009) used the Chubb illusion to test whether high contrast backgrounds affected the visual perceptions of older participants lesser than the younger participants owing to reduced inhibition. The stimuli used for the experiments were based on the parameters used by Dakin, Carlin and Hemsley (2005), who used the Chubb illusion to check for reduced inhibition in people with schizophrenia. Their study however, showed that contrast sensitivity did not really decline with ageing as the older participants showed a greater discrepancy in perceived contrast of the target with regard to the background than the younger participants. [14]

See also

Related Research Articles

Optical illusion Visually perceived images that differ from objective reality

Within visual perception, an optical illusion is an illusion caused by the visual system and characterized by a visual percept that arguably appears to differ from reality. Illusions come in a wide variety; their categorization is difficult because the underlying cause is often not clear but a classification proposed by Richard Gregory is useful as an orientation. According to that, there are three main classes: physical, physiological, and cognitive illusions, and in each class there are four kinds: Ambiguities, distortions, paradoxes, and fictions. A classical example for a physical distortion would be the apparent bending of a stick half immerged in water; an example for a physiological paradox is the motion aftereffect. An example for a physiological fiction is an afterimage. Three typical cognitive distortions are the Ponzo, Poggendorff, and Müller-Lyer illusion. Physical illusions are caused by the physical environment, e.g. by the optical properties of water. Physiological illusions arise in the eye or the visual pathway, e.g. from the effects of excessive stimulation of a specific receptor type. Cognitive visual illusions are the result of unconscious inferences and are perhaps those most widely known.

Müller-Lyer illusion Optical illusion

The Müller-Lyer illusion is an optical illusion consisting of three stylized arrows. When viewers are asked to place a mark on the figure at the midpoint, they tend to place it more towards the "tail" end. The illusion was devised by Franz Carl Müller-Lyer (1857–1916), a German sociologist, in 1889.

Phi phenomenon Optical illusion of apparent motion

The term phi phenomenon is used in a narrow sense for an apparent motion that is observed if two nearby optical stimuli are presented in alternation with a relatively high frequency. In contrast to beta movement, seen at lower frequencies, the stimuli themselves do not appear to move. Instead, a diffuse, amorphous shadowlike something seems to jump in front of the stimuli and occlude them temporarily. This shadow seems to have nearly the color of the background. Max Wertheimer first described this form of apparent movement in his habilitation thesis, published 1912, marking the birth of Gestalt psychology.

Grid illusion

A grid illusion is any kind of grid that deceives a person's vision. The two most common types of grid illusions are the Hermann grid illusion and the scintillating grid illusion.

Mach bands Optical illusion

Mach bands is an optical illusion named after the physicist Ernst Mach. It exaggerates the contrast between edges of the slightly differing shades of gray, as soon as they contact one another, by triggering edge-detection in the human visual system.

Depth perception Visual ability to perceive the world in 3D

Depth perception is the visual ability to perceive the world in three dimensions (3D) and the distance of an object. Depth sensation is the corresponding term for non-human animals, since although it is known that they can sense the distance of an object, it is not known whether they perceive it in the same subjective way that humans do.

Cornsweet illusion Optical illusion

The Cornsweet illusion, also known as the Craik–O'Brien–Cornsweet illusion or the Craik–Cornsweet illusion, is an optical illusion that was described in detail by Tom Cornsweet in the late 1960s. Kenneth Craik and Vivian O'Brien had made earlier observations in a similar vein.

A contrast effect is the enhancement or diminishment, relative to normal, of perception, cognition or related performance as a result of successive or simultaneous exposure to a stimulus of lesser or greater value in the same dimension.

Ambiguous image Image that exploits graphical similarities between two or more distinct images

Ambiguous images or reversible figures are visual forms which create ambiguity by exploiting graphical similarities and other properties of visual system interpretation between two or more distinct image forms. These are famous for inducing the phenomenon of multistable perception. Multistable perception is the occurrence of an image being able to provide multiple, although stable, perceptions.

Whites illusion

White's illusion is a brightness illusion where certain stripes of a black and white grating is partially replaced by a gray rectangle. Both of the gray bars of A and B are the same color and opacity. The brightness of the gray pieces appear to shift toward the brightness of the top and bottom bordering stripes. This is in apparent opposition to lateral inhibition as it cannot explain this occurrence. This occurs even when the gray patches in the black stripes are bordered by more white than black. A similar illusion occurs when the horizontal strips have different colors; this is known as Munker–White's illusion, Munker's illusion, or Bezold effect.

Hering illusion Geometrical-optical illusion

The Hering illusion is one of the geometrical-optical illusions and was discovered by the German physiologist Ewald Hering in 1861. When two straight and parallel lines are presented in front of radial background, the lines appear as if they were bowed outwards. The Orbison illusion is one of its variants, while the Wundt illusion produces a similar, but inverted effect.

Illusory contours Visual illusions

Illusory contours or subjective contours are visual illusions that evoke the perception of an edge without a luminance or color change across that edge. Illusory brightness and depth ordering often accompany illusory contours. Friedrich Schumann is often credited with the discovery of illusory contours around the beginning of the 20th century, but they are present in art dating to the Middle Ages. Gaetano Kanizsa’s 1976 Scientific American paper marked the resurgence of interest in illusory contours for vision scientists.

Filling-in

In vision, filling-in phenomena are those responsible for the completion of missing information across the physiological blind spot, and across natural and artificial scotomata. There is also evidence for similar mechanisms of completion in normal visual analysis. Classical demonstrations of perceptual filling-in involve filling in at the blind spot in monocular vision, and images stabilized on the retina either by means of special lenses, or under certain conditions of steady fixation. For example, naturally in monocular vision at the physiological blind spot, the percept is not a hole in the visual field, but the content is “filled-in” based on information from the surrounding visual field. When a textured stimulus is presented centered on but extending beyond the region of the blind spot, a continuous texture is perceived. This partially inferred percept is paradoxically considered more reliable than a percept based on external input..

Motion-induced blindness

Motion Induced Blindness (MIB) is a phenomenon of visual disappearance or perceptual illusions observed in the lab, in which stationary visual stimuli disappear as if erased in front of an observer's eyes when masked with a moving background. Most recent research has shown that microsaccades counteract disappearance but are neither necessary nor sufficient to account for MIB.

Watercolor illusion Optical illusion in which a white area takes on a pale tint

The watercolor illusion, also referred to as the water-color effect, is an optical illusion in which a white area takes on a pale tint of a thin, bright, intensely colored polygon surrounding it if the coloured polygon is itself surrounded by a thin, darker border. The inner and outer borders of watercolor illusion objects often are of complementary colours. The watercolor illusion is best when the inner and outer contours have chromaticities in opposite directions in color space. The most common complementary pair is orange and purple. The watercolor illusion is dependent on the combination of luminance and color contrast of the contour lines in order to have the color spreading effect occur.

Neon color spreading Optical illusion

Neon color spreading is an optical illusion in the category of transparency effects, characterized by fluid borders between the edges of a colored object and the background in the presence of black lines. The illusion was first documented in 1971 and was eventually rediscovered in 1975 by Van Tuijl.

Phantom contour

A phantom contour is a type of illusory contour. Most illusory contours are seen in still images, such as the Kanizsa triangle and the Ehrenstein illusion. A phantom contour, however, is perceived in the presence of moving or flickering images with contrast reversal. The rapid, continuous alternation between opposing, but correlated, adjacent images creates the perception of a contour that is not physically present in the still images. Quaid et al. have also authored a PhD thesis on the phantom contour illusion and its spatiotemporal limits which maps out limits and proposes mechanisms for its perception centering around magnocellularly driven visual area MT.

Visual tilt effects

Due to the effect of a spatial context or temporal context, the perceived orientation of a test line or grating pattern can appear tilted away from its physical orientation. The tilt illusion (TI) is the phenomenon that the perceived orientation of a test line or grating is altered by the presence of surrounding lines or grating with a different orientation. And the tilt aftereffect (TAE) is the phenomenon that the perceived orientation is changed after prolonged inspection of another oriented line or grating.

Visual processing abnormalities in schizophrenia

Visual processing abnormalities in schizophrenia are commonly found, and contribute to poor social function.

Beau Lotto

Beau Lotto is a Professor of Neuroscience and author. He is a professor at University of London, as well as a visiting scholar at New York University. His research explores how the brain adapts to uncertainty at the cellular, computational and perceptual levels with the aim of understanding the fundamental principles of biologically-inspired innovation.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Lotto, R. Beau; Purves, Dale (July 2001). "An Empirical Explanation of the Chubb Illusion" (PDF). Journal of Cognitive Neuroscience. 13 (5): 547–55. CiteSeerX   10.1.1.488.377 . doi:10.1162/089892901750363154. PMID   11506656. S2CID   30337884. Archived from the original (PDF) on 2006-09-07. Retrieved 2013-03-27.
  2. 1 2 3 4 5 6 7 8 Chubb, C; Sperling, G; Solomon, JA (December 1989). "Texture interactions determine perceived contrast". Proceedings of the National Academy of Sciences USA. 86 (23): 9631–5. Bibcode:1989PNAS...86.9631C. doi: 10.1073/pnas.86.23.9631 . PMC   298552 . PMID   2594791.
  3. Bach, Michael. "Contrast Gain Control". www.michaelbach.de. Retrieved 2017-03-30.
  4. Wallach, H (1948). "Brightness constancy and the nature of achromatic colors". J Exp Psychol. 38 (3): 310–24. doi:10.1037/h0053804. PMID   18865234.
  5. Grossberg, S.; Todorovic, D. (1988). "Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena". Percept Psychophys. 43 (3): 241–77. doi: 10.3758/bf03207869 . PMID   3347487.
  6. Purves, Dale (2001). "Why we see things the way we do: evidence for a wholly empirical strategy of vision". Philos Trans R Soc Lond B Biol Sci. 356 (1407): 285–97. doi:10.1098/rstb.2000.0772. PMC   1088429 . PMID   11316481.
  7. Adelson, E.H. (1999). Light Perception and Lightness Illusions. The New Cognitive Neurosciences. MIT Press. p. 339. ISBN   978-0-262-07195-6.
  8. Metelli, F; DaPos, O; Cavedon, A (1985). "Balanced and unbalanced, complete and partial transparency". Percept Psychophys. 38 (4): 354–66. doi: 10.3758/BF03207164 . PMID   3831912.
  9. Anderson, B.L. (1997). "A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions" (PDF). Perception. 26 (4): 419–453. doi:10.1068/p260419. PMID   9404492. S2CID   9646380.
  10. Soon, Chun Siong; Dubey, Rachit; Ananyev, Egor; Hsieh, Po-Jang (2017-01-01). Zhao, Qi (ed.). Computational and Cognitive Neuroscience of Vision. Cognitive Science and Technology. Springer Singapore. pp. 221–233. doi:10.1007/978-981-10-0213-7_10. ISBN   9789811002113.
  11. 1 2 3 4 5 Yang, Eunice; Tadin, Duje; Glasser, Davis M.; Hong, Sang Wook; Blake, Randolph; Park, Sohee (2012-11-15). "Visual Context Processing in Schizophrenia". Clinical Psychological Science. 1 (1): 5–15. doi:10.1177/2167702612464618. PMC   3756604 . PMID   23997995.
  12. 1 2 Dakin, Steven; Carlin, Patricia; Hemsley, David (2005-10-25). "Weak suppression of visual context in chronic schizophrenia". Current Biology. 15 (20): R822–824. doi: 10.1016/j.cub.2005.10.015 . ISSN   0960-9822. PMID   16243017.
  13. Keane, Brian P.; Joseph, Jamie; Silverstein, Steven M. (2014-04-01). "Late, not early, stages of Kanizsa shape perception are compromised in schizophrenia". Neuropsychologia. 56: 302–311. doi:10.1016/j.neuropsychologia.2014.02.001. PMC   4103877 . PMID   24513023.
  14. 1 2 Karas, Renee; McKendrick, Allison M. (2009-05-14). "Aging alters surround modulation of perceived contrast". Journal of Vision. 9 (5): 11.1–9. doi: 10.1167/9.5.11 . ISSN   1534-7362. PMID   19757889.