Constant spectrum melody

Last updated
Spectrum of a paradoxical constant spectrum melody SpectreParadoxalZ.png
Spectrum of a paradoxical constant spectrum melody
Audio of the above spectrum

A constant timbre at a constant pitch is characterized by a spectrum. Along a piece of music, the spectrum measured within a narrow time window varies with the melody and the possible effects of instruments. Therefore, it may seem paradoxical that a constant spectrum can be perceived as a melody rather than a stamp.

Contents

The paradox [1] is that the ear is not an abstract spectrograph: it "calculates" the Fourier transform of the audio signal in a narrow time window, but the slower variations are seen as temporal evolution and not as pitch.

However, the example of paradoxical melody above contains no infrasound (i.e. pure tone of period slower than the time window). The second paradox is that when two pitches are very close, they create a beat. If the period of this beat is longer than the integration window, it is seen as a sinusoidal variation in the average rating: sin(2π(f+ε)t) + sin(2π(f-ε)t) = sin(2πft)cos(2πεt), where 1/ε is the slow period.

The present spectrum is made of multiple frequencies beating together, resulting in a superimposition of various pitches fading in and out at different moments and pace, thus forming the melody.

MATLAB/Scilab/Octave code

Here is the program used to generate the paradoxical melody:

n=10; length=20; harmon=10; df=0.1;  t=(1:length*44100)/44100;  y=0;  for i = 0:n,    for j = 1:harmon,      y=y+sin(2*3.1415927*(55+i*df)*j*t);    end;  end; sound(y/(n*harmon),44100);

Related Research Articles

Frequency Number of occurrences or cycles per unit time

Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as temporal frequency to emphasize the contrast to spatial frequency, and ordinary frequency to emphasize the contrast to angular frequency. Frequency is measured in hertz (Hz) which is equal to one event per second. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute, its period, T—the time interval between beats—is half a second. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.

Keplers laws of planetary motion Scientific laws describing motion of planets around the Sun

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
Wavelength Spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings, and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

Dirac delta function Pseudo-function δ such that an integral of δ(x-c)f(x) always takes the value of f(c)

In mathematics, the Dirac delta function is a generalized function or distribution, a function on the space of test functions. It was introduced by physicist Paul Dirac. It is called a function, although it is not a function RC.

Bremsstrahlung Electromagnetic radiation

Bremsstrahlung, from bremsen "to brake" and Strahlung "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

Shepard tone

A Shepard tone, named after Roger Shepard, is a sound consisting of a superposition of sine waves separated by octaves. When played with the bass pitch of the tone moving upward or downward, it is referred to as the Shepard scale. This creates the auditory illusion of a tone that seems to continually ascend or descend in pitch, yet which ultimately gets no higher or lower.

Periodic function Function that repeats its values at regular intervals or periods

A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. Any function that is not periodic is called aperiodic.

Auditory illusions are false perceptions of a real sound or outside stimulus. These false perceptions are the equivalent of an optical illusion: the listener hears either sounds which are not present in the stimulus, or sounds that should not be possible given the circumstance on how they were created.

Trigonometric tables Overview about trigonometric tables

In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.

Spectral density Relative importance of certain frequencies in a composite signal

The power spectrum of a time series describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of a certain signal or sort of signal as analyzed in terms of its frequency content, is called its spectrum.

Equation of time Apparent solar time minus mean solar time

The equation of time describes the discrepancy between two kinds of solar time. The word equation is used in the medieval sense of "reconcile a difference". The two times that differ are the apparent solar time, which directly tracks the diurnal motion of the Sun, and mean solar time, which tracks a theoretical mean Sun with uniform motion. Apparent solar time can be obtained by measurement of the current position of the Sun, as indicated by a sundial. Mean solar time, for the same place, would be the time indicated by a steady clock set so that over the year its differences from apparent solar time would have a mean of zero.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

Jean-Claude Risset

Jean-Claude Risset was a French composer, best known for his pioneering contributions to computer music. Risset was a former student of André Jolivet and former co-worker of Max Mathews at Bell Labs.

Sea state The general condition of the free surface on a large body of water

In oceanography, sea state is the general condition of the free surface on a large body of water—with respect to wind waves and swell—at a certain location and moment. A sea state is characterized by statistics, including the wave height, period, and power spectrum. The sea state varies with time, as the wind conditions or swell conditions change. The sea state can either be assessed by an experienced observer, like a trained mariner, or through instruments like weather buoys, wave radar or remote sensing satellites.

Dirichlet integral Integral of sin(x)/x from 0 to infinity.

In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line:

Beat (acoustics) Term in acoustics

In acoustics, a beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies.

In statistical signal processing, the goal of spectral density estimation (SDE) is to estimate the spectral density of a random signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

The narrow escape problem is a ubiquitous problem in biology, biophysics and cellular biology.

Pitch circularity

Pitch circularity is a fixed series of tones that appear to ascend or descend endlessly in pitch.

References

  1. A. Chaigne (1988), “Psychoacoustique”, ENST, 114 pages.

See also