Cognition

Last updated

Cognition is "the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". [1] It encompasses many aspects of intellectual functions and processes such as attention, the formation of knowledge, memory and working memory, judgment and evaluation, reasoning and "computation", problem solving and decision making, comprehension and production of language. Cognitive processes use existing knowledge and generate new knowledge.

Attention Behavioral and cognitive process of selectively concentrating on a discrete aspect of information, whether deemed subjective or objective, while ignoring other perceivable information

Attention is the behavioral and cognitive process of selectively concentrating on a discrete aspect of information, whether deemed subjective or objective, while ignoring other perceivable information. It is a state of arousal. It is the taking possession by the mind in clear and vivid form of one out of what seem several simultaneous objects or trains of thought. Focalization, the concentration of consciousness, is of its essence. Attention has also been described as the allocation of limited cognitive processing resources.

Knowledge is a familiarity, awareness, or understanding of someone or something, such as facts, information, descriptions, or skills, which is acquired through experience or education by perceiving, discovering, or learning.

Memory information stored in the mind, or the mental processes involved in receiving, storing, and retrieving this information

Memory is the faculty of the brain by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop. Memory loss is usually described as forgetfulness or amnesia.

Contents

The processes are analyzed from different perspectives within different contexts, notably in the fields of linguistics, anesthesia, neuroscience, psychiatry, psychology, education, philosophy, anthropology, biology, systemics, logic, and computer science. [2] These and other different approaches to the analysis of cognition are synthesised in the developing field of cognitive science, a progressively autonomous academic discipline.

Linguistics is the scientific study of language. It involves analysing language form, language meaning, and language in context. The earliest activities in the documentation and description of language have been attributed to the 6th-century-BC Indian grammarian Pāṇini who wrote a formal description of the Sanskrit language in his Aṣṭādhyāyī.

Anesthesia State of medically controlled temporary loss of sensation or awareness

Anesthesia or anaesthesia is a state of controlled, temporary loss of sensation or awareness that is induced for medical purposes. It may include analgesia, paralysis, amnesia, or unconsciousness. A patient under the effects of anesthetic drugs is referred to as being anesthetized.

Neuroscience scientific study of the nervous system

Neuroscience is the scientific study of the nervous system. It is a multidisciplinary branch of biology that combines physiology, anatomy, molecular biology, developmental biology, cytology, mathematical modeling and psychology to understand the fundamental and emergent properties of neurons and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "ultimate challenge" of the biological sciences.

Etymology

The word cognition comes from the Latin verb cognosco (con, 'with', and gnōscō, 'know'; itself a cognate of the Greek verb γι(γ)νώσκω, gi(g)nόsko, meaning 'I know, perceive'[ citation needed ]), meaning 'to conceptualize' or 'to recognize'. [3]

Latin Indo-European language of the Italic family

Latin is a classical language belonging to the Italic branch of the Indo-European languages. The Latin alphabet is derived from the Etruscan and Greek alphabets and ultimately from the Phoenician alphabet.

Ancient Greek Version of the Greek language used from roughly the 9th century BCE to the 6th century CE

The ancient Greek language includes the forms of Greek used in Ancient Greece and the ancient world from around the 9th century BCE to the 6th century CE. It is often roughly divided into the Archaic period, Classical period, and Hellenistic period. It is antedated in the second millennium BCE by Mycenaean Greek and succeeded by Medieval Greek.

The beginnings of the studies on cognition

The word cognition dates back to the 15th century, when it meant "thinking and awareness". [4] Attention to cognitive processes came about more than eighteen centuries earlier, however, beginning with Aristotle (384–322 BC) and his interest in the inner workings of the mind and how they affect the human experience. Aristotle focused on cognitive areas pertaining to memory, perception, and mental imagery. He placed great importance on ensuring that his studies were based on empirical evidence, that is, scientific information that is gathered through observation and conscientious experimentation. [5] Two millennia later, as psychology emerged as a burgeoning field of study in Europe and then gained a following in America, other scientists like Wilhelm Wundt, Herman Ebbinghaus, Mary Whiton Calkins, and William James would offer their contributions to the study of human cognition.

Aristotle philosopher in ancient Greece

Aristotle was a Greek philosopher during the Classical period in Ancient Greece, the founder of the Lyceum and the Peripatetic school of philosophy and Aristotelian tradition. Along with his teacher Plato, he has been called the "Father of Western Philosophy". His writings cover many subjects – including physics, biology, zoology, metaphysics, logic, ethics, aesthetics, poetry, theatre, music, rhetoric, psychology, linguistics, economics, politics and government. Aristotle provided a complex synthesis of the various philosophies existing prior to him, and it was above all from his teachings that the West inherited its intellectual lexicon, as well as problems and methods of inquiry. As a result, his philosophy has exerted a unique influence on almost every form of knowledge in the West and it continues to be a subject of contemporary philosophical discussion.

Psychology is the science of behavior and mind. Psychology includes the study of conscious and unconscious phenomena, as well as feeling and thought. It is an academic discipline of immense scope. Psychologists seek an understanding of the emergent properties of brains, and all the variety of phenomena linked to those emergent properties, joining this way the broader neuroscientific group of researchers. As a social science it aims to understand individuals and groups by establishing general principles and researching specific cases.

Wilhelm Wundt (1832–1920) emphasized the notion of what he called introspection: examining the inner feelings of an individual. With introspection, the subject had to be careful to describe their feelings in the most objective manner possible in order for Wundt to find the information scientific. [6] [7] Though Wundt's contributions are by no means minimal, modern psychologists find his methods to be quite subjective and choose to rely on more objective procedures of experimentation to make conclusions about the human cognitive process.

Wilhelm Wundt German physician, physiologist, philosopher and professor

Wilhelm Maximilian Wundt was a physician, physiologist, philosopher, and professor, known today as one of the founders of modern psychology. Wundt, who distinguished psychology as a science from philosophy and biology, was the first person ever to call himself a psychologist. He is widely regarded as the "father of experimental psychology". In 1879, at University of Leipzig, Wundt founded the first formal laboratory for psychological research. This marked psychology as an independent field of study. By creating this laboratory he was able to establish psychology as a separate science from other disciplines. He also formed the first academic journal for psychological research, Philosophische Studien, set up to publish the Institute's research.

Hermann Ebbinghaus (1850–1909) conducted cognitive studies that mainly examined the function and capacity of human memory. Ebbinghaus developed his own experiment in which he constructed over 2,000 syllables made out of nonexistent words, for instance EAS. He then examined his own personal ability to learn these non-words. He purposely chose non-words as opposed to real words to control for the influence of pre-existing experience on what the words might symbolize, thus enabling easier recollection of them. [6] [8] Ebbinghaus observed and hypothesized a number of variables that may have affected his ability to learn and recall the non-words he created. One of the reasons, he concluded, was the amount of time between the presentation of the list of stimuli and the recitation or recall of same. Ebbinghaus was the first to record and plot a "learning curve", and a "forgetting curve". [9] His work heavily influenced the study of serial position and its effect on memory, discussed in subsequent sections.

Hermann Ebbinghaus German psychologist

Hermann Ebbinghaus was a German psychologist who pioneered the experimental study of memory, and is known for his discovery of the forgetting curve and the spacing effect. He was also the first person to describe the learning curve. He was the father of the neo-Kantian philosopher Julius Ebbinghaus.

Mary Whiton Calkins (1863–1930) was an influential American pioneer in the realm of psychology. Her work also focused on the human memory capacity. A common theory, called the recency effect, can be attributed to the studies that she conducted. [10] The recency effect, also discussed in the subsequent experiment section, is the tendency for individuals to be able to accurately recollect the final items presented in a sequence of stimuli. Calkin's theory is closely related to the aforementioned study and conclusion of the memory experiments conducted by Hermann Ebbinghaus. [11]

William James (1842–1910) is another pivotal figure in the history of cognitive science. James was quite discontent with Wundt's emphasis on introspection and Ebbinghaus' use of nonsense stimuli. He instead chose to focus on the human learning experience in everyday life and its importance to the study of cognition. James' most significant contribution to the study and theory of cognition was his textbook Principles of Psychology that preliminarily examines aspects of cognition such as perception, memory, reasoning, and attention. [11]

Psychology

When the mind makes a generalization such as the concept of tree, it extracts similarities from numerous examples; the simplification enables higher-level thinking (abstract thinking). Generalization process using trees PNG version.png
When the mind makes a generalization such as the concept of tree, it extracts similarities from numerous examples; the simplification enables higher-level thinking (abstract thinking).

In psychology, the term "cognition" is usually used within an information processing view of an individual's psychological functions (see cognitivism), [12] and it is the same in cognitive engineering; [13] in a branch of social psychology called social cognition, the term is used to explain attitudes, attribution, and group dynamics. [12]

Human cognition is conscious and unconscious, concrete or abstract, as well as intuitive (like knowledge of a language) and conceptual (like a model of a language). It encompasses processes such as memory, association, concept formation, pattern recognition, language, attention, perception, action, problem solving and mental imagery. [14] [15] Traditionally, emotion was not thought of as a cognitive process, but now much research is being undertaken to examine the cognitive psychology of emotion; research is also focused on one's awareness of one's own strategies and methods of cognition, which is called metacognition.

While few people would deny that cognitive processes are a function of the brain, a cognitive theory will not necessarily make reference to the brain or to biological processes (compare neurocognitive). It may purely describe behavior in terms of information flow or function. Relatively recent fields of study such as neuropsychology aim to bridge this gap, using cognitive paradigms to understand how the brain implements the information-processing functions (see also cognitive neuroscience), or to understand how pure information-processing systems (e.g., computers) can simulate human cognition (see also artificial intelligence). The branch of psychology that studies brain injury to infer normal cognitive function is called cognitive neuropsychology. The links of cognition to evolutionary demands are studied through the investigation of animal cognition.

Piaget's theory of cognitive development

For years, sociologists and psychologists have conducted studies on cognitive development or the construction of human thought or mental processes.

Jean Piaget was one of the most important and influential people in the field of Developmental Psychology. He believed that humans are unique in comparison to animals because we have the capacity to do "abstract symbolic reasoning". His work can be compared to Lev Vygotsky, Sigmund Freud, and Erik Erikson who were also great contributors in the field of Developmental Psychology. Today, Piaget is known for studying the cognitive development in children. He studied his own three children and their intellectual development and came up with a theory that describes the stages children pass through during development. [16]

StageAge or PeriodDescription
Sensorimotor stageInfancy (0–2 years)Intelligence is present; motor activity but no symbols; knowledge is developing yet limited; knowledge is based on experiences/ interactions; mobility allows child to learn new things; some language skills are developed at the end of this stage. The goal is to develop object permanence; achieves basic understanding of causality, time, and space.
Pre-operational stageToddler and Early Childhood (2–7 years)Symbols or language skills are present; memory and imagination are developed; nonreversible and nonlogical thinking; shows intuitive problem solving; begins to see relationships; grasps concept of conservation of numbers; egocentric thinking predominates.
Concrete operational stageElementary and Early Adolescence (7–12 years)Logical and systematic form of intelligence; manipulation of symbols related to concrete objects; thinking is now characterized by reversibility and the ability to take the role of another; grasps concepts of the conservation of mass, length, weight, and volume; operational thinking predominates nonreversible and egocentric thinking
Formal operational stageAdolescence and Adulthood (12 years and on)Logical use of symbols related to abstract concepts; Acquires flexibility in thinking as well as the capacities for abstract thinking and mental hypothesis testing; can consider possible alternatives in complex reasoning and problem solving. [17]

Common experiments on human cognition

Serial position

The serial position experiment is meant to test a theory of memory that states that when information is given in a serial manner, we tend to remember information in the beginning of the sequence, called the primacy effect, and information in the end of the sequence, called the recency effect. Consequently, information given in the middle of the sequence is typically forgotten, or not recalled as easily. This study predicts that the recency effect is stronger than the primacy effect, because the information that is most recently learned is still in working memory when asked to be recalled. Information that is learned first still has to go through a retrieval process. This experiment focuses on human memory processes. [18]

Word superiority

The word superiority experiment presents a subject with a word, or a letter by itself, for a brief period of time, i.e. 40ms, and they are then asked to recall the letter that was in a particular location in the word. By theory, the subject should be better able to correctly recall the letter when it was presented in a word than when it was presented in isolation. This experiment focuses on human speech and language. [19]

Brown-Peterson

In the Brown-Peterson experiment, participants are briefly presented with a trigram and in one particular version of the experiment, they are then given a distractor task, asking them to identify whether a sequence of words are in fact words, or non-words (due to being misspelled, etc.). After the distractor task, they are asked to recall the trigram from before the distractor task. In theory, the longer the distractor task, the harder it will be for participants to correctly recall the trigram. This experiment focuses on human short-term memory. [20]

Memory span

During the memory span experiment, each subject is presented with a sequence of stimuli of the same kind; words depicting objects, numbers, letters that sound similar, and letters that sound dissimilar. After being presented with the stimuli, the subject is asked to recall the sequence of stimuli that they were given in the exact order in which it was given. In one particular version of the experiment, if the subject recalled a list correctly, the list length was increased by one for that type of material, and vice versa if it was recalled incorrectly. The theory is that people have a memory span of about seven items for numbers, the same for letters that sound dissimilar and short words. The memory span is projected to be shorter with letters that sound similar and with longer words. [21]

Visual search

In one version of the visual search experiment, a participant is presented with a window that displays circles and squares scattered across it. The participant is to identify whether there is a green circle on the window. In the "featured" search, the subject is presented with several trial windows that have blue squares or circles and one green circle or no green circle in it at all. In the "conjunctive" search, the subject is presented with trial windows that have blue circles or green squares and a present or absent green circle whose presence the participant is asked to identify. What is expected is that in the feature searches, reaction time, that is the time it takes for a participant to identify whether a green circle is present or not, should not change as the number of distractors increases. Conjunctive searches where the target is absent should have a longer reaction time than the conjunctive searches where the target is present. The theory is that in feature searches, it is easy to spot the target, or if it is absent, because of the difference in color between the target and the distractors. In conjunctive searches where the target is absent, reaction time increases because the subject has to look at each shape to determine whether it is the target or not because some of the distractors if not all of them, are the same color as the target stimuli. Conjunctive searches where the target is present take less time because if the target is found, the search between each shape stops. [22]

Knowledge representation

The semantic network of knowledge representation systems has been studied in various paradigms. One of the oldest paradigms is the leveling and sharpening of stories as they are repeated from memory studied by Bartlett. The semantic differential used factor analysis to determine the main meanings of words, finding that value or "goodness" of words is the first factor. More controlled experiments examine the categorical relationships of words in free recall. The hierarchical structure of words has been explicitly mapped in George Miller's Wordnet. More dynamic models of semantic networks have been created and tested with neural network experiments based on computational systems such as latent semantic analysis (LSA), Bayesian analysis, and multidimensional factor analysis. The semantics (meaning) of words is studied by all the disciplines of cognitive science.[ citation needed ]

Recent developments

An emergent field of research, referred to as "Team Cognition", is arising in military sciences. "Team cognition" indicates “an emergent property of teams that results from the interplay of individual cognition and team process behaviors [...] [Team cognition] underlies team performance” (Arizona State University East, 2005, Cooke NJ, 2005). [23]

Metacognition

Metacognition is "cognition about cognition", "thinking about thinking", "knowing about knowing", becoming "aware of one's awareness" and higher-order thinking skills. The term comes from the root word meta , meaning "beyond", or "on top of". [24] Metacognition can take many forms; it includes knowledge about when and how to use particular strategies for learning or problem-solving. [24] There are generally two components of metacognition: (1) knowledge about cognition and (2) regulation of cognition. [25]

Metamemory, defined as knowing about memory and mnemonic strategies, is an especially important form of metacognition. [26] Academic research on metacognitive processing across cultures is in the early stages, but there are indications that further work may provide better outcomes in cross-cultural learning between teachers and students. [27]

Some evolutionary psychologists hypothesize that humans use metacognition as a survival tool. [27] [ need quotation to verify ] Writings on metacognition date back at least as far as two works by the Greek philosopher Aristotle (384–322 BC): On the Soul and the Parva Naturalia . [28]

See also

Related Research Articles

Cognitive science interdisciplinary scientific study of the mind and its processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. The fundamental concept of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

Cognitive psychology is the scientific study of mental processes such as "attention, language use, memory, perception, problem solving, creativity, and thinking". Much of the work derived from cognitive psychology has been integrated into various other modern disciplines such as Cognitive Science and of psychological study, including educational psychology, social psychology, personality psychology, abnormal psychology, developmental psychology, linguistics, and economics.

Short-term memory is the capacity for holding, but not manipulating, a small amount of information in mind in an active, readily available state for a short period of time. For example, short-term memory can be used to remember a phone number that has just been recited. The duration of short-term memory is believed to be in the order of seconds. The most commonly cited capacity is The Magical Number Seven, Plus or Minus Two, despite the facts that Miller himself stated that the figure was intended as "little more than a joke" and that Cowan (2001) provided evidence that a more realistic figure is 4±1 units. In contrast, long-term memory can hold the information indefinitely.

Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans and animals. Two main theories of the process of recall are the two-stage theory and the theory of encoding specificity.

Picture superiority effect

The picture superiority effect refers to the phenomenon in which pictures and images are more likely to be remembered than words. This effect has been demonstrated in numerous experiments using different methods. It is based on the notion that "human memory is extremely sensitive to the symbolic modality of presentation of event information". Explanations for the picture superiority effect are not concrete and are still being debated.

In cognitive psychology, chunking is a process by which individual pieces of an information set are broken down and then grouped together. A chunk is a collection of basic familiar units that have been grouped together and stored in a person's memory. These chunks are able to be retrieved more easily due to their coherent familiarity. It is believed that individuals create higher order cognitive representations of the items within the chunk. The items are more easily remembered as a group than as the individual items themselves. These chunks can be highly subjective because they rely on an individuals perceptions and past experiences, that are able to be linked to the information set. The size of the chunks generally range anywhere from two to six items, but often differ based on language and culture.

Dual-coding theory, a theory of cognition, was hypothesized by Allan Paivio of the University of Western Ontario in 1971. In developing this theory, Paivio used the idea that the formation of mental images aids in learning. According to Paivio, there are two ways a person could expand on learned material: verbal associations and visual imagery. Dual-coding theory postulates that both visual and verbal information is used to represent information. Visual and verbal information are processed differently and along distinct channels in the human mind, creating separate representations for information processed in each channel. The mental codes corresponding to these representations are used to organize incoming information that can be acted upon, stored, and retrieved for subsequent use. Both visual and verbal codes can be used when recalling information. For example, say a person has stored the stimulus concept "dog" as both the word 'dog' and as the image of a dog. When asked to recall the stimulus, the person can retrieve either the word or the image individually, or both simultaneously. If the word is recalled, the image of the dog is not lost and can still be retrieved at a later point in time. The ability to code a stimulus two different ways increases the chance of remembering that item compared to if the stimulus was only coded one way.

Metacognition is "cognition about cognition", "thinking about thinking", "knowing about knowing", becoming "aware of one's awareness" and higher-order thinking skills. The term comes from the root word meta, meaning "beyond", or "on top of". Metacognition can take many forms; it includes knowledge about when and how to use particular strategies for learning or problem-solving. There are generally two components of metacognition: (1) knowledge about cognition and (2) regulation of cognition.

Visual search is a type of perceptual task requiring attention that typically involves an active scan of the visual environment for a particular object or feature among other objects or features. Visual search can take place with or without eye movements. The ability to consciously locate an object or target amongst a complex array of stimuli has been extensively studied over the past 40 years. Practical examples of using visual search can be seen in everyday life, such as when one is picking out a product on a supermarket shelf, when animals are searching for food amongst piles of leaves, when trying to find your friend in a large crowd of people, or simply when playing visual search games such as Where's Wally? Much previous literature on visual search used reaction time in order to measure the time it takes to detect the target amongst its distractors. An example of this could be a green square amongst a set of red circles. However, reaction time measurements do not always distinguish between the role of attention and other factors: a long reaction time might be the result of difficulty directing attention to the target, or slowed decision-making processes or slowed motor responses after attention is already directed to the target and the target has already been detected. Many visual search paradigms have therefore used eye movement as a means to measure the degree of attention given to stimuli. However, eye movements can move independently of attention, and therefore eye movement measures do not completely capture the role of attention.

Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows the perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from short-term or long-term memory. Working memory stores information for immediate use or manipulation which is aided through hooking onto previously archived items already present in the long-term memory of an individual.

Negative priming

Negative priming is an implicit memory effect in which prior exposure to a stimulus unfavorably influences the response to the same stimulus. It falls under the category of priming, which refers to the change in the response towards a stimulus due to a subconscious memory effect. Negative priming describes the slow and error-prone reaction to a stimulus that is previously ignored. For example, a subject may be imagined trying to pick a red pen from a pen holder. The red pen becomes the target of attention, so the subject responds by moving their hand towards it. At this time, they mentally block out all other pens as distractors to aid in closing in on just the red pen. After repeatedly picking the red pen over the others, switching to the blue pen results in a momentary delay picking the pen out. The slow reaction due to the change of the distractor stimulus to target stimulus is called the negative priming effect.

Memory is the process of storing and recalling information that was previously acquired. Memory occurs through three fundamental stages: encoding, storage, and retrieval. Storing refers to the process of placing newly acquired information into memory, which is modified in the brain for easier storage. Encoding this information makes the process of retrieval easier for the brain where it can be recalled and brought into conscious thinking. Modern memory psychology differentiates between the two distinct types of memory storage: short-term memory and long-term memory. Several models of memory have been proposed over the past century, some of them suggesting different relationships between short- and long-term memory to account for different ways of storing memory.

Metamemory or Socratic awareness, a type of metacognition, is both the introspective knowledge of one’s own memory capabilities and the processes involved in memory self-monitoring. This self-awareness of memory has important implications for how people learn and use memories. When studying, for example, students make judgements of whether they have successfully learned the assigned material and use these decisions, known as "judgments of learning", to allocate study time.

Priming is a technique whereby exposure to one stimulus influences a response to a subsequent stimulus, without conscious guidance or intention. For example, the word NURSE is recognized more quickly following the word DOCTOR than following the word BREAD. Priming can be perceptual, semantic, or conceptual. Research, however, has yet to firmly establish the duration of priming effects, yet their onset can be almost instantaneous.

Emotion can have a powerful effect on humans and animals. Numerous studies have shown that the most vivid autobiographical memories tend to be of emotional events, which are likely to be recalled more often and with more clarity and detail than neutral events.

In neuroscience, the visual P200 or P2 is a waveform component or feature of the event-related potential (ERP) measured at the human scalp. Like other potential changes measurable from the scalp, this effect is believed to reflect the post-synaptic activity of a specific neural process. The P2 component, also known as the P200, is so named because it is a positive going electrical potential that peaks at about 200 milliseconds after the onset of some external stimulus. This component is often distributed around the centro-frontal and the parieto-occipital areas of the scalp. It is generally found to be maximal around the vertex of the scalp, however there have been some topographical differences noted in ERP studies of the P2 in different experimental conditions.

Embodied cognition is the theory that many features of cognition, whether human or otherwise, are shaped by aspects of the entire body of the organism. The features of cognition include high level mental constructs and performance on various cognitive tasks. The aspects of the body include the motor system, the perceptual system, bodily interactions with the environment (situatedness) and the assumptions about the world that are built into the structure of the organism.

Distributed practice is a learning strategy, where practice is broken up into a number of short sessions – over a longer period of time. Humans and animals learn items in a list more effectively when they are studied in several sessions spread out over a long period of time, rather than studied repeatedly in a short period of time, a phenomenon called the spacing effect. The opposite, massed practice, consists of fewer, longer training sessions. It is generally a less effective method of learning. For example, when studying for an exam dispersing your studying more frequently over a larger period of time will result in more effective learning than intense study the night before.

In cognitive psychology, intertrial priming is an accumulation of the priming effect over multiple trials, where "priming" is the effect of the exposure to one stimulus on subsequently presented stimuli. Intertrial priming occurs when a target feature is repeated from one trial to the next, and typically results in speeded response times to the target. A target is the stimulus participants are required to search for. For example, intertrial priming occurs when the task is to respond to either a red or a green target, and the response time to a red target is faster if the preceding trial also has a red target.

Perceptual load theory is a psychological theory of attention. It was presented by Nilli Lavie in the mid-nineties as a potential resolution to the early/late selection debate. This debate relates to the "cocktail party problem": how do people at a cocktail party select the conversation they are listening to and ignore the others? The models of attention proposed prior to Lavie's theory differed in their proposals for the point in the information processing stream where the selection of target information occurs, leading to a heated debate about whether the selection occurs "early" or "late". There were also arguments about to what degree distracting stimuli are processed.

References

  1. "cognition - definition of cognition in English from the Oxford dictionary". www.oxforddictionaries.com. Retrieved 2016-02-04.
  2. Von Eckardt, Barbara (1996). What is cognitive science?. Massachusetts: MIT Press. pp. 45–72. ISBN   9780262720236.
  3. Stefano Franchi, Francesco Bianchini. "On The Historical Dynamics Of Cognitive Science: A View From The Periphery". The Search for a Theory of Cognition: Early Mechanisms and New Ideas. Rodopi, 2011. p. XIV.
  4. Cognition: Theory and Practice by Russell Revlin
  5. Matlin, Margaret (2009). Cognition. Hoboken, NJ: John Wiley & Sons, Inc. p. 4.
  6. 1 2 Fuchs, A. H.; Milar, K.J. (2003). "Psychology as a science". Handbook of Psychology. 1 (The history of psychology): 1–26. doi:10.1002/0471264385.wei0101.
  7. Zangwill, O. L. (2004). The Oxford companion to the mind. New York: Oxford University Press. pp. 951–952.
  8. Zangwill, O.L. (2004). The Oxford companion to the mind. New York: Oxford University Press. p. 276.
  9. T.L. Brink (2008) Psychology: A Student Friendly Approach. "Unit 7: Memory." p. 126
  10. Madigan, S.; O'Hara, R. (1992). "Short-term memory at the turn of the century: Mary Whiton Calkin's memory research". American Psychologist. 47 (2): 170–174. doi:10.1037/0003-066X.47.2.170.
  11. 1 2 Matlin, Margaret (2009). Cognition. Hoboken, NJ: John Wiley & Sons, Inc. p. 5.
  12. 1 2 Sternberg, R. J., & Sternberg, K. (2009). Cognitive psychology (6th Ed.). Belmont, CA: Wadsworth, Cengage Learning.
  13. Blomberg, O. (2011). "Concepts of cognition for cognitive engineering". International Journal of Aviation Psychology . 21 (1): 85–104. doi:10.1080/10508414.2011.537561.
  14. Sensation & Perception, 5th ed. 1999, Coren, Ward & Enns, p. 9
  15. Cognitive Psychology, 5th ed. 1999, Best, John B., pp. 15–17
  16. Cherry, Kendra. "Jean Piaget Biography". The New York Times Company. Retrieved 18 September 2012.
  17. Parke, R. D., & Gauvain, M. (2009). Child psychology: A contemporary viewpoint (7th Ed.). Boston, MA: McGraw-Hill.
  18. Surprenant, A (2001). "Distinctiveness and serial position effects in total sequences". Perception and Psychophysics. 63 (4): 737–745. doi:10.3758/BF03194434. PMID   11436742.
  19. Krueger, L. (1992). "The word-superiority effect and phonological recoding". Memory & Cognition. 20 (6): 685–694. doi:10.3758/BF03202718.
  20. Nairne, J.; Whiteman, H.; Kelley, M. (1999). "Short-term forgetting of order under conditions of reduced interference" (PDF). Quarterly Journal of Experimental Psychology A: Human Experimental Psychology. 52: 241–251. doi:10.1080/713755806.
  21. May, C.; Hasher, L.; Kane, M. (1999). "The role of interference in memory span". Memory & Cognition. 27 (5): 759–767. doi:10.3758/BF03198529. PMID   10540805.
  22. Wolfe, J.; Cave, K.; Franzel, S. (1989). "Guided search: An alternative to the feature integration model for visual search". Journal of Experimental Psychology: Human Perception and Performance. 15 (3): 419–433. CiteSeerX   10.1.1.551.1667 . doi:10.1037/0096-1523.15.3.419.
  23. Russo, M.; Fiedler, E.; Thomas, M.; McGhee (2005), United States Army Aeromedical Research Laboratory. Cognitive Performance in Operational Environments, North Atlantic Treaty Organization (NATO) RTO-MP-HFM-124, 14 - 3 - Open access material, PUBLIC RELEASE - ISBN   92-837-0044-9 - “Strategies to Maintain Combat Readiness during Extended Deployments – A Human Systems Approach”.
  24. 1 2 Metcalfe, J., & Shimamura, A. P. (1994). Metacognition: knowing about knowing. Cambridge, MA: MIT Press.
  25. Schraw, Gregory (1998). "Promoting general metacognitive awareness". Instructional Science. 26: 113–125. doi:10.1023/A:1003044231033.
  26. Dunlosky, J. & Bjork, R. A. (Eds.). Handbook of Metamemory and Memory. Psychology Press: New York.
  27. 1 2 Wright, Frederick. APERA Conference 2008. 14 April 2009. http://www.apera08.nie.edu.sg/proceedings/4.24.pdf%5B%5D
  28. Colman, Andrew M. (2001). "metacognition". A Dictionary of Psychology. Oxford Paperback Reference (4 ed.). Oxford: Oxford University Press (published 2015). p. 456. ISBN   9780199657681 . Retrieved 17 May 2017. Writings on metacognition can be traced back at least as far as De Anima and the Parva Naturalia of the Greek philosopher Aristotle (384-322 BC) [...].

Further reading