Spatial intelligence (psychology)

Last updated

Spatial intelligence is an area in the theory of multiple intelligences that deals with spatial judgment and the ability to visualize with the mind's eye. It is defined by Howard Gardner as a human computational capacity that provides the ability or mental skill to solve spatial problems of navigation, visualization of objects from different angles and space, faces or scenes recognition, or to notice fine details. Gardner further explains that Spatial Intelligence could be more effective to solve problems in areas related to realistic, thing-oriented, and investigative occupations. This capability is a brain skill that is also found in people with visual impairment. As researched by Gardner, a blind person can recognize shapes in a non-visual way. The spatial reasoning of the blind person allows them to translate tactile sensations into mental calculations of length and visualizations of form.

Contents

Spatial intelligence is one of the nine intelligences on Howard Gardner's theory of multiple intelligences, each of which is composed of a number of separate sub capacities. An intelligence provides the ability to solve problems or create products that are valued in a particular culture. Each intelligence is a neurally based computational system that is activated by internal or external information. Intelligences are always an interaction between biological proclivities and the opportunities for learning that exist in a culture. The application of this theory in the general practice covers a product range from scientific theories to musical compositions to successful political campaigns. [1] Gardner suggested a general correspondence between each capability with an occupational role in the workplace, for examples: for those individuals with linguistic intelligence he pointed journalists, speakers and trainers; scientists, engineers, financiers and accountants on logical-mathematical intelligence; sales people, managers, teachers and counselors on the personal intelligence; athletes, contractors and actors on bodily-kinesthetic intelligence; taxonomists, ecologists and veterinarians on naturalistic intelligence; clergy and philosophers on existential intelligence and designers, architects and taxi drivers, astronauts, airplane pilots and race car drivers and stunt men on spatial intelligence. [1]

Different approaches

Newcombe and Frick

In the article, Early Education for spatial intelligence: Why, What and How, Nora Newcombe and Andrea Frick apply the concept of spatial intelligence to the educational realm. Newcombe and Frick approached the concept in different ways: [2]

Ness, Farenga, and Garofalo

Daniel Ness, Stephen Farenga, and Salvatore Garofalo argue that along with verbal intelligence and logico-mathematical intelligence, spatial intelligence is one of three cognitive domains on which individuals are assessed at some point in their lives. Unlike verbal and logico-mathematical intelligence, however, spatial intelligence is often not assessed on most standardized tests and secondary-level or tertiary-level entrance examinations. Its lack of inclusion on these assessments is problematic because success on questions based on verbal intelligence and logico-mathematical intelligence may fail to tap populations skilled in spatial relations and orientations. Ness, Farenga, and Garofalo also posit that experiences with certain physical objects allow for greater dividends in spatial intelligence. To this end, objects with greater affordance, such as certain LEGO bricks, may impede spatial intelligence while objects with limited affordance, such as cuboidal blocks (i.e., planks) provide for increased spatial intelligence.

Van Schaik

The architect Leon van Schaik formulates the adoption of spatial intelligence in the field of architecture and design. His first assumption relates to the origin of architecture in the human computational capacity to organize themselves spatially; based on people's own ideas about space, histories in space and communal mental space; all have been a combination that has evolved into society over millennia. [5] Van Schaik explains how spatial intelligence works and how it is linked to the way individuals assess their surroundings. His comments are based on the research done by Roger Penrose, Shadows of the Mind. [6] The awareness of what happens around someone comes from cells in the human body with enormous calculating capabilities, "intelligence is a distributed system: not something held like a command centre in the brain and then distributed, but something that is present throughout the organism, and linked together through the nervous system". [5] An example to explain this human capability is similar to the ways spatial intelligence works in kinetic environments. Like the ability in which football players compute and execute the exact angle and force required to score a goal from a free kick. Another example of distributed intelligence at work is in the Australian Aboriginal Art. Aboriginal dot painting is a representation of the landscape inhabited by them with a surprising resemblance to the real space. It shows watercourses, animal shelter, where the edible plant are and all dimensions and spatial arrangement has been learned through a constant exposure to the world surrounding them, by walking, hunting, stalking, spearing. [5] Van Schaik argues about the influence of spatial intelligence in the creation of engaging spaces. His assumption is to create a better relation between internal and external environments, and it requires the use of the best available knowledge, which in his opinion, involves the designer's spatial intelligence and mental space; the new informational environment that enables the professional designer to communicate more interactively and inclusively. [5] In van Schaik point of view, this new process of understanding space will provide the chance to forge new kinds of unity between architecture and the communities it seeks to serve: the commission of spatial intelligence is leading architecture's domain into a new discipline that venture into new spatial formulations, new roles and new approaches. Van Schaik also pointed that architecture has to be more than the production of branded consumable, it has to be capable to influence the individuals deeper history, a benign and malevolent influence in people's lives. For van Schaik, some of the most influencing architects using spatial intelligence in combination of their community's mental space are: Peter Zumthor, Sean Godsell, Herzog and de Meuron, Zaha Hadid and Kathryn Findlay. [5]

Komninos

Nicos Komninos applies the concept of spatial intelligence to cities, and defined the idea as the ability of a community to use its intellectual capital, institutions and material infrastructure to deal with a range of problems and challenges. Spatial intelligence emerges from the agglomeration and integration of three types of intelligence: the inventiveness, creativity and intellectual capital of the city's population; the collective intelligence of the city's institutions and social capital; and the artificial intelligence of public and citywide smart infrastructure, virtual environments and intelligent agents. Using this spatially combined intellectual capacity, cities can respond effectively to changing socio-economic conditions, address challenges, plan their future, and sustain the prosperity and well-being of citizens. [7]

Gopnik

Adam Gopnik defines spatial intelligence as the ability to grasp a changing whole and anticipate its next stage; the ability to make quick decisions; to size up all the relationships in a fast-changing array and understand them. A related notion is that of situational awareness: a heightened consciousness of the individual's surroundings and both the intentions of the people around and their anticipated actions. Gopnik claims that the power of spatial intelligence and situational awareness are fully explained in the practice of hockey. Gopnik explains that hockey reveals and rewards situational and spatial intelligence like no other sport. Gopnik's example refers to the ability of the hockey player Wayne Gretzky as a gift of spatial and situational intelligence: knowing what is going to happen in three seconds, anticipating the pattern approaching by seeing the pattern instantaneously, sussing out the goalie's next decision and other players' eventual trajectories in what would be a single glance if a glance were even taken. “Gretzky is the extreme expression of the common skill the game demands”. [8] [9]

Rendell and Rawes

Jane Rendell and Peg Rawes research on Spatial Imagination in Design demonstrates that an individual's sensory and perceptual engagement with an environment or space is, in part, constructed by their powers of imagination. [10] For Rendell and Rawes spatial imagination works in a specific political and cultural imagination as belonging to the individual designer and user. The results of this contextual understanding will inform and reflect the specific cultural, historical and political diversity and value of the architectural and built environment to the design community and beyond. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Theory of multiple intelligences</span> Theory of intelligence proposed by Howard Gardner

The theory of multiple intelligences proposes the differentiation of human intelligence into specific intelligences, rather than defining intelligence as a single, general ability. The theory has been very popular among educators around the world for 40 years despite being criticized by mainstream psychology for its lack of empirical evidence, and its dependence on subjective judgement.

<span class="mw-page-title-main">Creativity</span> Forming something new and somehow valuable

Creativity is a characteristic of someone or some process that forms something new and valuable. The created item may be intangible or a physical object.

Visual thinking, also called visual or spatial learning or picture thinking, is the phenomenon of thinking through visual processing. Visual thinking has been described as seeing words as a series of pictures. It is common in approximately 60–65% of the general population. "Real picture thinkers", those who use visual thinking almost to the exclusion of other kinds of thinking, make up a smaller percentage of the population. Research by child development theorist Linda Kreger Silverman suggests that less than 30% of the population strongly uses visual/spatial thinking, another 45% uses both visual/spatial thinking and thinking in the form of words, and 25% thinks exclusively in words. According to Kreger Silverman, of the 30% of the general population who use visual/spatial thinking, only a small percentage would use this style over and above all other forms of thinking, and can be said to be true "picture thinkers".

Human intelligence is the intellectual capability of humans, which is marked by complex cognitive feats and high levels of motivation and self-awareness. Using their intelligence, humans are able to learn, form concepts, understand, and apply logic and reason. Human intelligence is also thought to encompass our capacities to recognize patterns, plan, innovate, solve problems, make decisions, retain information, and use language to communicate.

In the philosophy of mind, neuroscience, and cognitive science, a mental image is an experience that, on most occasions, significantly resembles the experience of "perceiving" some object, event, or scene but occurs when the relevant object, event, or scene is not actually present to the senses. There are sometimes episodes, particularly on falling asleep and waking up, when the mental imagery may be dynamic, phantasmagoric, and involuntary in character, repeatedly presenting identifiable objects or actions, spilling over from waking events, or defying perception, presenting a kaleidoscopic field, in which no distinct object can be discerned. Mental imagery can sometimes produce the same effects as would be produced by the behavior or experience imagined.

<span class="mw-page-title-main">Cognitive map</span> Mental representation of information

A cognitive map is a type of mental representation which serves an individual to acquire, code, store, recall, and decode information about the relative locations and attributes of phenomena in their everyday or metaphorical spatial environment. The concept was introduced by Edward Tolman in 1948. He tried to explain the behavior of rats that appeared to learn the spatial layout of a maze, and subsequently the concept was applied to other animals, including humans. The term was later generalized by some researchers, especially in the field of operations research, to refer to a kind of semantic network representing an individual's personal knowledge or schemas.

Cognitive tests are assessments of the cognitive capabilities of humans and other animals. Tests administered to humans include various forms of IQ tests; those administered to animals include the mirror test and the T maze test. Such testing is used in psychology and psychometrics, as well as other fields studying human and animal intelligence.

<span class="mw-page-title-main">Visual language</span> System of communication using visual elements

A visual language is a system of communication using visual elements. Speech as a means of communication cannot strictly be separated from the whole of human communicative activity which includes the visual and the term 'language' in relation to vision is an extension of its use to describe the perception, comprehension and production of visible signs.

<span class="mw-page-title-main">Mental rotation</span>

Mental rotation is the ability to rotate mental representations of two-dimensional and three-dimensional objects as it is related to the visual representation of such rotation within the human mind. There is a relationship between areas of the brain associated with perception and mental rotation. There could also be a relationship between the cognitive rate of spatial processing, general intelligence and mental rotation.

Spatial visualization ability or visual-spatial ability is the ability to mentally manipulate 2-dimensional and 3-dimensional figures. It is typically measured with simple cognitive tests and is predictive of user performance with some kinds of user interfaces.

Creative visualization is the cognitive process of purposefully generating visual mental imagery, with eyes open or closed, simulating or recreating visual perception, in order to maintain, inspect, and transform those images, consequently modifying their associated emotions or feelings, with intent to experience a subsequent beneficial physiological, psychological, or social effect, such as expediting the healing of wounds to the body, minimizing physical pain, alleviating psychological pain including anxiety, sadness, and low mood, improving self-esteem or self-confidence, and enhancing the capacity to cope when interacting with others.

<span class="mw-page-title-main">Outline of thought</span> Overview of and topical guide to thought

The following outline is provided as an overview of and topical guide to thought (thinking):

Neurodevelopmental framework for learning, like all frameworks, is an organizing structure through which learners and learning can be understood. Intelligence theories and neuropsychology inform many of them. The framework described below is a neurodevelopmental framework for learning. The neurodevelopmental framework was developed by the All Kinds of Minds Institute in collaboration with Dr. Mel Levine and the University of North Carolina's Clinical Center for the Study of Development and Learning. It is similar to other neuropsychological frameworks, including Alexander Luria's cultural-historical psychology and psychological activity theory, but also draws from disciplines such as speech-language pathology, occupational therapy, and physical therapy. It also shares components with other frameworks, some of which are listed below. However, it does not include a general intelligence factor, since the framework is used to describe learners in terms of profiles of strengths and weaknesses, as opposed to using labels, diagnoses, or broad ability levels. This framework was also developed to link with academic skills, such as reading and writing. Implications for education are discussed below as well as the connections to and compatibilities with several major educational policy issues.

<span class="mw-page-title-main">Nora Newcombe</span>

Nora S. Newcombe is the Laura H. Carnell Professor of Psychology and the James H. Glackin Distinguished Faculty Fellow at Temple University. She is a Canadian-American researcher in cognitive development, cognitive psychology and cognitive science, and expert on the development of spatial thinking and reasoning and episodic memory. She was the principal investigator of the Spatial Intelligence and Learning Center (2006-2018), one of six Science of Learning Centers funded by the National Science Foundation.

Neo-Piagetian theories of cognitive development criticize and build upon Jean Piaget's theory of cognitive development.

Spatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals including humans behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines work together to understand spatial cognition in different species, especially in humans. Thereby, spatial cognition studies also have helped to link cognitive psychology and neuroscience. Scientists in both fields work together to figure out what role spatial cognition plays in the brain as well as to determine the surrounding neurobiological infrastructure.

Sex differences in human intelligence have long been a topic of debate among researchers and scholars. It is now recognized that there are no significant sex differences in general intelligence, though particular subtypes of intelligence vary somewhat between sexes.

Aphantasia is the inability to create mental imagery.

Sex differences in cognition are widely studied in the current scientific literature. Biological and genetic differences in combination with environment and culture have resulted in the cognitive differences among males and females. Among biological factors, hormones such as testosterone and estrogen may play some role mediating these differences. Among differences of diverse mental and cognitive abilities, the largest or most well known are those relating to spatial abilities, social cognition and verbal skills and abilities.

<span class="mw-page-title-main">Spatial ability</span> Capacity to understand 3D relationships

Spatial ability or visuo-spatial ability is the capacity to understand, reason, and remember the visual and spatial relations among objects or space.

References

  1. 1 2 Gardner Howard (2006). Multiple Intelligences: New Horizons. p 6-7.
  2. Integrating spatial contact into formal and informal instruction could improve spatial functioning in general.
  3. 1 2 Newcombe Nora S and Andrea Frick (2010). Early Education for Spatial Intelligence: Why, What, and How.
  4. Newcombe and Frick suggested various researches within general intelligence in adults by Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press. Spatial numeracy factor in preschoolers (by Bornstein, M. H. (2009). The mind of the preschool child: The intelligence-school interface. In O. A. Barbarin & B. H. Wasik (Eds.), Handbook of early child development and early education: Research to practice (pp. 123–142). New York: Guilford) as well as in chimpanzees (by Herrmann, E., Herna ́ndez-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21, 102–110.) Spatial intelligence was one of the types of intelligence proposed in multiple-intelligence theory by Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books. Approaches to working memory have distinguished between verbal working memory and the visu-ospatial sketchpad by Baddeley, A. (1986). Working memory. New York: Clarendon Press/Oxford University Press.
  5. 1 2 3 4 5 Van Schaik Leon (2008). Spatial Intelligence: New Futures For Architecture. John Wiley & Son Inc Great Britain. ISBN   978-0-470-72322-7 (hb) 978-0470-72323-4 (pb)
  6. Penrose Roger (1994). Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press. United States of America.
  7. Komninos Nicos (2008). ‘’Intelligent Cities and Globalisation of Innovation Networks.’’ Routledge, London and New York
  8. Gopnik, Adam (2011-09-27). "Why hockey is the smartest game in the world - Macleans.ca". www.macleans.ca. Maclean's. Retrieved 22 November 2019.
  9. Gopnik, Adam (2011). Winter: Five Windows on the Season . Toronto, CA: House of Anansi Press, Inc. p.  164.
  10. This spatial imagination works within spatial intelligence and is understood as part of the design process.
  11. Inns Tom (2007). Designing for the 21st Century: Interdisciplinary Questions and insights. Gower England. pp 13, 205-207 ISBN   9780566087370

Further reading