In psychology and neuroscience, memory span is the longest list of items that a person can repeat back in correct order immediately after presentation on 50% of all trials. Items may include words, numbers, or letters. The task is known as digit span when numbers are used. Memory span is a common measure of working memory and short-term memory. It is also a component of cognitive ability tests such as the Wechsler Adult Intelligence Scale (WAIS). Backward memory span is a more challenging variation which involves recalling items in reverse order.
Functionally, memory span is used to measure the number of discrete units over which the individual can successively distribute his attention and still organize them into a working unit. To generalize, it refers to the ability of an individual to reproduce immediately, after one presentation, a series of discrete stimuli in their original order. [1]
Experiments in memory span have found that the more familiar a person is with the type of subject matter presented to them, the more they will remember it in a novel setting. For example, a person will better remember a sequence in their first-language than their second-language; a person will also remember a sequence of words better than they would a sequence of nonsense syllables. [2]
According to a theory by Alan Baddeley and Graham Hitch, working memory is under the influence of three key mechanisms: the visuospatial sketchpad, the central executive, and the phonological loop. A mechanism called the episodic buffer was later added to the model. The phonological loop is the mechanism that facilitates learning and memory by storing information (in the articulatory loop) and refreshing or rehearsing it in memory (in the acoustic store). [3] The phonological similarity effect is when items in a list have similar features (e.g. similar sound), they are more difficult to remember. Likewise, the more different the items in a list are, the easier it is to recall them. [4] Memory span tasks since the formulation of Baddeley and Hitch's theory have been helpful as support for the phonological loop as part of the working memory. [5] [6]
A structural definition of memory span is difficult to give, for one immediately is faced by the distinctions between the prerequisites for memory span, and the actual processes involved. "Associability” is required in memory span. This term refers to the ability of the subject to group the series of elements together: to perceive relationships among the series in order to better reproduce them. Still, another process involved in memory span is that of imagery. The subject, in order to be able to reproduce the series presented, must be able to image the series. The actual reproducing of the series of stimuli involves the process of memory. If the individual possessed no memory at all, reproduction of the series would be impossible. It is also known that memory span and memory are different in the length of time over which reproduction is possible. Memory span is transitory; memory is fairly permanent. In addition, the amount of material involved in memory span is ordinarily much less than the amount of material involved in memory. Reproduction of the series also involves certain other "reproduction factors," such as language ability and arithmetical proficiency. [7]
A digit-span task is used to measure working memory's number storage capacity. Participants see or hear a sequence of numerical digits and are tasked to recall the sequence correctly, with increasingly longer sequences being tested in each trial. The participant's span is the longest number of sequential digits that can accurately be remembered. Digit-span tasks can be given forwards or backwards, meaning that once the sequence is presented, the participant is asked to either recall the sequence in normal or reverse order. [8] Digit-span tasks are the most commonly used test for memory span, partially because performance on a digit-span task cannot be affected by factors such as semantics, frequency of appearance in daily life, complexity, etc. [2]
Memory span | |
---|---|
MeSH | D011581 |
Verbal working memory is involved in many everyday tasks, such as remembering a friend's telephone number while entering it into a phone and understanding long and difficult sentences. [9] [ citation needed ] Verbal working memory is also thought to be one of the elements underlying intelligence (often referred to as IQ, meaning 'intelligence quotient'); thus, the digit span task is a common component of many IQ tests, including the widely used Wechsler Adult Intelligence Scale (WAIS). Performance on the digit span task is also closely linked to language learning abilities; improving verbal memory capacities may therefore aid mastery of a new language. [10] [11] [12]
There are a number of factors which affect memory span. Some of the factors are extrinsic, or present in the testing situation itself. These factors, if not carefully controlled, cause the memory span test to be statistically unreliable. While the existence of many of these factors have been recognized, extensive studies on their importance have yet to be done. Some of these extrinsic factors include stimulus grouping, response grouping, presentation rate, and S-R compatibility. [13]
Other factors are intrinsic in the individual, and it is these factors which are the basis of "true" memory span. Though numerous factors affect memory span, the test is one that shows surprisingly high reliability. Results obtained by different investigators show that the reliability coefficients for memory span are quite high. [ citation needed ]
There are certain intrinsic factors specific to each individual that may affect the extent, or span, of one's working memory.
An individual's age affects their working memory span. During childhood and adolescent development, memory span improves with age. After adulthood is reached, memory span slowly decreases as an individual progresses towards old age. The decline in memory span with old age has been associated with a decrease of working memory storage and processing, and the age difference in working memory becomes greater as the memory tasks performed become more difficult. [23] Generally, the decline in working memory and memory span tasks in old age is attributed to a decline in overall cognitive control. One of the key aspects of working memory is the ability to inhibit distractions and to focus on stimulus cues. As a person ages, these abilities diminish, which reduces effective memory. [24]
Musical training improves the verbal memory span, but there is no consensus among researchers if it improves visual working memory capacity. The more training received the better the memory improvement. [25] [26] Preschoolers given short-term musical training showed improvement in their executive function and verbal memory span. [27] Sixty to eighty-five year-olds who received piano lessons showed a decrease of age-based memory decline, as well as improved executive function and working memory. [28] Musicians also perform significantly better on the rhythm span test (the results of which correlate significantly with results of the digit span test). [29] [30] Musicians perform better on verbal tone-based memory span tasks than non-musicians; however they do not perform better than non-musicians if the tones in a verbal task are across multiple words. [31]
In a typical test of memory span, a list of random numbers or letters is read out loud or presented on a computer screen at the rate of one per second. The test begins with two to three numbers, increasing until the person commits errors. Recognizable patterns (for example 2, 4, 6, 8) should be avoided. At the end of a sequence, the person being tested is asked to recall the items in order. The average digit span for normal adults without error is seven plus or minus two. [32] However, memory span can be expanded dramatically – in one case to 80 digits – by learning a sophisticated mnemonic system of recoding rules by which substrings of 5 to 10 digits are translated into one new chunk. [33] In December 2019, Ryu Song I entered the Guinness Book of World Records for memorizing a sequence of 547 digits spoken aloud at the rate of one per second at the World Memory Championship in Wuhan, China. [34]
In a backward digit span task, the procedure is largely the same, except that subjects being tested are asked to recall the digits in backward order (e.g., if presented with the following string of numbers "1 5 9 2 3," the subject would be asked to recall the digits in reverse order; in the case, the correct response would be "3 2 9 5 1").
Other memory span tests focus on both a processing task and a memory storage task. Generally, the task involves alternating between a task that requires mental processing and cognition, and a word or digit that needs to be memorized. For example, the processing question might involve the participant checking if an arithmetic problem is correct, or reading a sentence and answering a comprehension question about its meaning. The participant would then be presented with a word to memorize, before moving on to the next processing question. When the exercise is complete, the participant will try to recall as many words as possible. When Daneman and Carpenter investigated this method in 1980, they found a strong correlation between the number of words memorized and the comprehension performance for the processing questions. In other words, those who had a high memory span score and could recall many of the words also performed well on the processing questions. [35]
Research in the 1970s has shown that memory span with digits and words is only weakly related to performance in complex cognitive tasks such as text comprehension, which are assumed to depend on short-term memory. [36] This questioned the interpretation of memory span as a measure of the capacity of a central short-term memory or working memory. Daneman and Carpenter introduced an extended version of the memory span task which they called reading span. [37]
The reading span task was the first instance of the family of complex span tasks, which differ from the traditional simple span tasks by adding a processing demand to the requirement to remember a list of items. In complex span tasks encoding of the memory items (e.g., words) alternates with brief processing episodes (e.g., reading sentences). For example, the operation span task combines verification of brief mathematical equations such as "2+6/2 = 5?" with memory for a word or a letter that follows immediately after each equation. [38] Complex-span tasks have also been shown to be closely related to many other aspects of complex cognitive performance besides language comprehension, among other things to measures of fluid intelligence. [39] [40]
There is the possibility that susceptibility to proactive interference (PI) affects performance on memory span measures. For older adults, span estimates increased with each PI-reducing manipulation; for younger adults, scores increased when multiple PI manipulations were combined or when PI-reducing manipulations were used in paradigms in which within-task PI was especially high. It is suggested that PI critically influences span performance. There might be the possibility that interference-proneness may influence cognitive behaviors previously thought to be governed by capacity.
PI-reducing procedures did act to improve span scores in many instances. The impact of PI is greater for older adults than for younger adults. Older adults showed relatively poor span performance when PI was maximal. By contrast, younger adults improved only when PI reductions were combined, suggesting that they are relatively resistant to PI. The fact that PI contributes to span performance raises a number of interesting possibilities with respect to previously held assumptions based on memory span performance. Working memory span tasks may measure interference-proneness in addition to capacity for both older and younger adults, suggest that resistance to interference may also affect performance on many cognitive tasks. Indeed, other studies show that individual differences in susceptibility to PI are predictive of scores on standard achievement tests. [41]
Short-term memory is the capacity for holding a small amount of information in an active, readily available state for a short interval. For example, short-term memory holds a phone number that has just been recited. The duration of short-term memory is estimated to be on the order of seconds. The commonly cited capacity of 7 items, found in Miller's Law, has been superseded by 4±1 items. In contrast, long-term memory holds information indefinitely.
Working memory is a cognitive system with a limited capacity that can hold information temporarily. It is important for reasoning and the guidance of decision-making and behavior. Working memory is often used synonymously with short-term memory, but some theorists consider the two forms of memory distinct, assuming that working memory allows for the manipulation of stored information, whereas short-term memory only refers to the short-term storage of information. Working memory is a theoretical concept central to cognitive psychology, neuropsychology, and neuroscience.
"The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information" is one of the most highly cited papers in psychology. It was written by the cognitive psychologist George A. Miller of Harvard University's Department of Psychology and published in 1956 in Psychological Review. It is often interpreted to argue that the number of objects an average human can hold in short-term memory is 7 ± 2. This has occasionally been referred to as Miller's law.
The interference theory is a theory regarding human memory. Interference occurs in learning. The notion is that memories encoded in long-term memory (LTM) are forgotten and cannot be retrieved into short-term memory (STM) because either memory could interfere with the other. There is an immense number of encoded memories within the storage of LTM. The challenge for memory retrieval is recalling the specific memory and working in the temporary workspace provided in STM. Retaining information regarding the relevant time of encoding memories into LTM influences interference strength. There are two types of interference effects: proactive and retroactive interference.
The picture superiority effect refers to the phenomenon in which pictures and images are more likely to be remembered than are words. This effect has been demonstrated in numerous experiments using different methods. It is based on the notion that "human memory is extremely sensitive to the symbolic modality of presentation of event information". Explanations for the picture superiority effect are not concrete and are still being debated, however an evolutionary explanation is that sight has a long history stretching back millions of years and was crucial to survival in the past, whereas reading is a relatively recent invention, and requires specific cognitive processes, such as decoding symbols and linking them to meaning.
In cognitive psychology, chunking is a process by which small individual pieces of a set of information are bound together to create a meaningful whole later on in memory. The chunks, by which the information is grouped, are meant to improve short-term retention of the material, thus bypassing the limited capacity of working memory and allowing the working memory to be more efficient. A chunk is a collection of basic units that are strongly associated with one another, and have been grouped together and stored in a person's memory. These chunks can be retrieved easily due to their coherent grouping. It is believed that individuals create higher-order cognitive representations of the items within the chunk. The items are more easily remembered as a group than as the individual items themselves. These chunks can be highly subjective because they rely on an individual's perceptions and past experiences, which are linked to the information set. The size of the chunks generally ranges from two to six items but often differs based on language and culture.
Baddeley's model of working memory is a model of human memory proposed by Alan Baddeley and Graham Hitch in 1974, in an attempt to present a more accurate model of primary memory. Working memory splits primary memory into multiple components, rather than considering it to be a single, unified construct.
Dual-coding theory is a theory of cognition that suggests that the mind processes information along two different channels; verbal and nonverbal. It was hypothesized by Allan Paivio of the University of Western Ontario in 1971. In developing this theory, Paivio used the idea that the formation of mental imagery aids learning through the picture superiority effect.
Subvocalization, or silent speech, is the internal speech typically made when reading; it provides the sound of the word as it is read. This is a natural process when reading, and it helps the mind to access meanings to comprehend and remember what is read, potentially reducing cognitive load.
The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. More analysis produce more elaborate and stronger memory than lower levels of processing. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word. Phonemic processing includes remembering the word by the way it sounds. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar or has similar meaning. Once the word is perceived, the brain allows for a deeper processing.
Alan David Baddeley CBE FRS is a British psychologist. He is known for his research on memory and for developing the three-component model of working memory. He is a professor of psychology at the University of York.
Information processing theory is the approach to the study of cognitive development evolved out of the American experimental tradition in psychology. Developmental psychologists who adopt the information processing perspective account for mental development in terms of maturational changes in basic components of a child's mind. The theory is based on the idea that humans process the information they receive, rather than merely responding to stimuli. This perspective uses an analogy to consider how the mind works like a computer. In this way, the mind functions like a biological computer responsible for analyzing information from the environment. According to the standard information-processing model for mental development, the mind's machinery includes attention mechanisms for bringing information in, working memory for actively manipulating information, and long-term memory for passively holding information so that it can be used in the future. This theory addresses how as children grow, their brains likewise mature, leading to advances in their ability to process and respond to the information they received through their senses. The theory emphasizes a continuous pattern of development, in contrast with cognitive-developmental theorists such as Jean Piaget's theory of cognitive development that thought development occurs in stages at a time.
Age-related memory loss, sometimes described as "normal aging", is qualitatively different from memory loss associated with types of dementia such as Alzheimer's disease, and is believed to have a different brain mechanism.
Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows a perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from long-term memory. Working memory stores information for immediate use or manipulation, which is aided through hooking onto previously archived items already present in the long-term memory of an individual.
Echoic memory is the sensory memory that registers specific to auditory information (sounds). Once an auditory stimulus is heard, it is stored in memory so that it can be processed and understood. Unlike most visual memory, where a person can choose how long to view the stimulus and can reassess it repeatedly, auditory stimuli are usually transient and cannot be reassessed. Since echoic memories are heard once, they are stored for slightly longer periods of time than iconic memories. Auditory stimuli are received by the ear one at a time before they can be processed and understood.
The modality effect is a term used in experimental psychology, most often in the fields dealing with memory and learning, to refer to how learner performance depends on the presentation mode of studied items.
Musical memory refers to the ability to remember music-related information, such as melodic content and other progressions of tones or pitches. The differences found between linguistic memory and musical memory have led researchers to theorize that musical memory is encoded differently from language and may constitute an independent part of the phonological loop. The use of this term is problematic, however, since it implies input from a verbal system, whereas music is in principle nonverbal.
The development of memory is a lifelong process that continues through adulthood. Development etymologically refers to a progressive unfolding. Memory development tends to focus on periods of infancy, toddlers, children, and adolescents, yet the developmental progression of memory in adults and older adults is also circumscribed under the umbrella of memory development.
Dichotic listening is a psychological test commonly used to investigate selective attention and the lateralization of brain function within the auditory system. It is used within the fields of cognitive psychology and neuroscience.
Sex differences in cognition are widely studied in the current scientific literature. Biological and genetic differences in combination with environment and culture have resulted in the cognitive differences among males and females. Among biological factors, hormones such as testosterone and estrogen may play some role mediating these differences. Among differences of diverse mental and cognitive abilities, the largest or most well known are those relating to spatial abilities, social cognition and verbal skills and abilities.