How the Self Controls Its Brain

Last updated
How the Self Controls Its Brain
How the Self Controls Its Brain - bookcover.jpg
Author John Carew Eccles
Country Australia
Language English
Subject Psychology
Publisher Springer-Verlag
Publication date
1994
Media typePrint
ISBN 3-540-56290-7
OCLC 29634892
128/.2 20
LC Class B105.M55 .E33 1994

How the Self Controls Its Brain [1] is a book by Sir John Eccles, proposing a theory of philosophical dualism, and offering a justification of how there can be mind-brain action without violating the principle of the conservation of energy. The model was developed jointly with the nuclear physicist Friedrich Beck in the period 1991–1992. [2] [3] [4]

Eccles called the fundamental neural units of the cerebral cortex "dendrons", which are cylindrical bundles of neurons arranged vertically in the six outer layers or laminae of the cortex, each cylinder being about 60 micrometres in diameter. Eccles proposed that each of the 40 million dendrons is linked with a mental unit, or "psychon", representing a unitary conscious experience. In willed actions and thought, psychons act on dendrons and, for a moment, increase the probability of the firing of selected neurons through quantum tunneling effect in synaptic exocytosis, while in perception the reverse process takes place.

Previous mention of the "psychon"

The earliest prior use of the word "psychon" with a similar meaning [5] of an "element of consciousness" is in the book "Concerning Fluctuating and Inaudible Sounds" by K. Dunlap in 1908. [6] The most popular prior use is in Robert Heinlein's short story Gulf, wherein a character refers to the fastest speed of thought possible as "one psychon per chronon".

See also

Related Research Articles

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of cognitive processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

<span class="mw-page-title-main">Consciousness</span> Awareness of existence

Consciousness, at its simplest, is awareness of internal and external existence. However, its nature has led to millennia of analyses, explanations and debate by philosophers, theologians, and scientists. Opinions differ about what exactly needs to be studied or even considered consciousness. In some explanations, it is synonymous with the mind, and at other times, an aspect of mind. In the past, it was one's "inner life", the world of introspection, of private thought, imagination and volition. Today, it often includes any kind of cognition, experience, feeling or perception. It may be awareness, awareness of awareness, or self-awareness either continuously changing or not. The disparate range of research, notions and speculations raises a curiosity about whether the right questions are being asked.

Epiphenomenalism is a position of philosophy of mind on the mind–body problem which holds that subjective mental events are completely dependent for their existence on corresponding physical and biochemical events within the human body, yet themselves have no influence over physical events. According to epiphenomenalism, the appearance that subjective mental states influence physical events is an illusion, consciousness being a by-product of physical states of the world. For instance, fear seems to make the heart beat faster, but according to epiphenomenalism the biochemical secretions of the brain and nervous system —not the experience of fear—is what raises the heartbeat. Because mental events are a kind of overflow that cannot cause anything physical, yet have non-physical properties, epiphenomenalism is viewed as a form of property dualism.

<span class="mw-page-title-main">John Eccles (neurophysiologist)</span> Australian neurophysiologist (1903–1997)

Sir John Carew Eccles was an Australian neurophysiologist and philosopher who won the 1963 Nobel Prize in Physiology or Medicine for his work on the synapse. He shared the prize with Andrew Huxley and Alan Lloyd Hodgkin.

<span class="mw-page-title-main">Neuroscience</span> Scientific study of the nervous system

Neuroscience is the scientific study of the nervous system, its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.

<span class="mw-page-title-main">Cognitive neuroscience</span> Scientific field

Cognitive neuroscience is the scientific field that is concerned with the study of the biological processes and aspects that underlie cognition, with a specific focus on the neural connections in the brain which are involved in mental processes. It addresses the questions of how cognitive activities are affected or controlled by neural circuits in the brain. Cognitive neuroscience is a branch of both neuroscience and psychology, overlapping with disciplines such as behavioral neuroscience, cognitive psychology, physiological psychology and affective neuroscience. Cognitive neuroscience relies upon theories in cognitive science coupled with evidence from neurobiology, and computational modeling.

Artificial consciousness (AC), also known as machine consciousness (MC), synthetic consciousness or digital consciousness, is the consciousness hypothesized to be possible in artificial intelligence. It is also the corresponding field of study, which draws insights from philosophy of mind, philosophy of artificial intelligence, cognitive science and neuroscience. The same terminology can be used with the term "sentience" instead of "consciousness" when specifically designating phenomenal consciousness.

<span class="mw-page-title-main">Orchestrated objective reduction</span> Theory of a quantum origin of consciousness

Orchestrated objective reduction is a highly controversial theory postulating that consciousness originates at the quantum level inside neurons. The mechanism is held to be a quantum process called objective reduction that is orchestrated by cellular structures called microtubules. It is proposed that the theory may answer the hard problem of consciousness and provide a mechanism for free will. The hypothesis was first put forward in the early 1990s by Nobel laureate for physics, Roger Penrose, and anaesthesiologist Stuart Hameroff. The hypothesis combines approaches from molecular biology, neuroscience, pharmacology, philosophy, quantum information theory, and quantum gravity.

The consciousness and binding problem is the problem of how objects, background, and abstract or emotional features are combined into a single experience.

Electromagnetic theories of consciousness propose that consciousness can be understood as an electromagnetic phenomenon.

Holonomic brain theory is a branch of neuroscience investigating the idea that human consciousness is formed by quantum effects in or between brain cells. Holonomic refers to representations in a Hilbert phase space defined by both spectral and space-time coordinates. Holonomic brain theory is opposed by traditional neuroscience, which investigates the brain's behavior by looking at patterns of neurons and the surrounding chemistry.

<span class="mw-page-title-main">Benjamin Libet</span> American neuroscientist

Benjamin Libet was an American neuroscientist who was a pioneer in the field of human consciousness. Libet was a researcher in the physiology department of the University of California, San Francisco. In 2003, he was the first recipient of the Virtual Nobel Prize in Psychology from the University of Klagenfurt, "for his pioneering achievements in the experimental investigation of consciousness, initiation of action, and free will".

<span class="mw-page-title-main">Neural binding</span>

Neural binding is the neuroscientific aspect of what is commonly known as the binding problem: the interdisciplinary difficulty of creating a comprehensive and verifiable model for the unity of consciousness. "Binding" refers to the integration of highly diverse neural information in the forming of one's cohesive experience. The neural binding hypothesis states that neural signals are paired through synchronized oscillations of neuronal activity that combine and recombine to allow for a wide variety of responses to context-dependent stimuli. These dynamic neural networks are thought to account for the flexibility and nuanced response of the brain to various situations. The coupling of these networks is transient, on the order of milliseconds, and allows for rapid activity.

<i>Shadows of the Mind</i> Book by Roger Penrose

Shadows of the Mind: A Search for the Missing Science of Consciousness is a 1994 book by mathematical physicist Roger Penrose that serves as a followup to his 1989 book The Emperor's New Mind: Concerning Computers, Minds and The Laws of Physics.

The quantum mind or quantum consciousness is a group of hypotheses proposing that local physical laws and interactions from classical mechanics or connections between neurons alone cannot explain consciousness, positing instead that quantum-mechanical phenomena, such as entanglement and superposition that cause nonlocalized quantum effects, interacting in smaller features of the brain than cells, may play an important part in the brain's function and could explain critical aspects of consciousness. These scientific hypotheses are as yet unvalidated, and they can overlap with quantum mysticism.

<span class="mw-page-title-main">Animal consciousness</span> Quality or state of self-awareness within an animal

Animal consciousness, or animal awareness, is the quality or state of self-awareness within an animal, or of being aware of an external object or something within itself. In humans, consciousness has been defined as: sentience, awareness, subjectivity, qualia, the ability to experience or to feel, wakefulness, having a sense of selfhood, and the executive control system of the mind. Despite the difficulty in definition, many philosophers believe there is a broadly shared underlying intuition about what consciousness is.

<span class="mw-page-title-main">Neural correlates of consciousness</span> Neuronal events sufficient for a specific conscious percept

The neural correlates of consciousness (NCC) are the minimal set of neuronal events and mechanisms sufficient for the occurrence of the mental states to which they are related. Neuroscientists use empirical approaches to discover neural correlates of subjective phenomena; that is, neural changes which necessarily and regularly correlate with a specific experience. The set should be minimal because, under the materialist assumption that the brain is sufficient to give rise to any given conscious experience, the question is which of its components are necessary to produce it.

Michael Steven Anthony Graziano is an American scientist and novelist who is currently a professor of Psychology and Neuroscience at Princeton University. His scientific research focuses on the brain basis of awareness. He has proposed the "attention schema" theory, an explanation of how, and for what adaptive advantage, brains attribute the property of awareness to themselves. His previous work focused on how the cerebral cortex monitors the space around the body and controls movement within that space. Notably he has suggested that the classical map of the body in motor cortex, the homunculus, is not correct and is better described as a map of complex actions that make up the behavioral repertoire. His publications on this topic have had a widespread impact among neuroscientists but have also generated controversy. His novels rely partly on his background in psychology and are known for surrealism or magic realism. Graziano also composes music including symphonies and string quartets.

<span class="mw-page-title-main">Friedrich Beck</span> German physicist

Friedrich Hans Beck was a German physicist. His research interests were focused on superconductivity, nuclear and elementary particle physics, relativistic quantum field theory, and late in his life, biophysics and theory of consciousness.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

References

  1. Eccles, John C. (1994). How the self controls its brain. Berlin: Springer-Verlag. ISBN   3-540-56290-7. OCLC   29634892.
  2. Beck, Friedrich (2008). "My Odyssey with Sir John Eccles". NeuroQuantology . 6 (2): 161–163. doi:10.14704/nq.2008.6.2.170.
  3. Beck, Friedrich; Eccles, John C. (1992). "Quantum aspects of brain activity and the role of consciousness" (PDF). Proc. Natl. Acad. Sci. U.S.A. 89 (23): 11357–11361. Bibcode:1992PNAS...8911357B. doi: 10.1073/pnas.89.23.11357 . PMC   50549 . PMID   1333607. Archived (PDF) from the original on 2018-07-27.
  4. Beck, Friedrich; Eccles, John C. (1998). "Quantum processes in the brain: A scientific basis of consciousness". Cognitive Studies: Bulletin of the Japanese Cognitive Science Society. 5 (2): 95–109.
  5. "psychon". Google Books ngram viewer.
  6. Dunlap, K. (1908). "Concerning Fluctuating and Inaudible Sounds".