Emergentism

Last updated

Emergentism is the belief in emergence, particularly as it involves consciousness and the philosophy of mind. A property of a system is said to be emergent if it is a new outcome of some other properties of the system and their interaction, while it is itself different from them. [1] Within the philosophy of science, emergentism is analyzed both as it contrasts with and parallels reductionism. [1] [2] This philosophical theory suggests that higher-level properties and phenomena arise from the interactions and organization of lower-level entities yet are not reducible to these simpler components. It emphasizes the idea that the whole is more than the sum of its parts.

Contents

The formation of complex symmetrical and fractal patterns in snowflakes exemplifies emergence in a physical system. SnowflakesWilsonBentley.jpg
The formation of complex symmetrical and fractal patterns in snowflakes exemplifies emergence in a physical system.

History

Early concepts of emergence

The concept of emergence can be traced back to ancient philosophical traditions. Aristotle, in particular, suggested that the whole could possess properties that its individual parts did not, laying an early foundation for emergentist thought. This idea persisted through the ages, influencing various schools of thought. [3]

The term "emergence" was formally introduced in the 19th century by the philosopher George Henry Lewes. He distinguished between "resultant" and "emergent" properties, where resultant properties could be predicted from the properties of the parts, whereas emergent properties could not. This distinction was crucial in differentiating emergent phenomena from simple aggregative effects. [4]

Development in the 20th century

In the early 20th century, emergentism gained further traction through the works of British emergentists like C.D. Broad and Samuel Alexander. C.D. Broad, in his 1925 book The Mind and Its Place in Nature, argued that mental states were emergent properties of brain processes. [5] Samuel Alexander, in his work Space, Time, and Deity, suggested that emergent qualities like consciousness and life could not be fully explained by the underlying physical processes alone. [6]

These philosophers were reacting against the reductionist view that all phenomena could be fully explained by their constituent parts. They argued that emergent properties such as consciousness have their own causal powers and cannot be reduced to or predicted from their base components. This period also saw the influence of Gestalt psychology, which emphasized that psychological phenomena cannot be understood solely by analyzing their component parts, further supporting emergentist ideas. [3]

Mid to late 20th century advances

During the mid-20th century, emergentism was somewhat overshadowed by the rise of behaviorism and later the cognitive sciences, which often leaned towards more reductionist explanations. However, the concept of emergence found renewed interest towards the late 20th century with the advent of complex systems theory and non-linear dynamics. [4]

In this period, scientists and philosophers began to explore how complex behaviors and properties could arise from relatively simple interactions in systems as diverse as ant colonies, economic markets, and neural networks. This interdisciplinary approach highlighted the ubiquity and importance of emergent phenomena across different domains, from physics to biology to social sciences. [3]

Contemporary developments

In recent years, emergentism has continued to evolve, integrating insights from various scientific fields. For example, in physics, the study of phenomena such as superconductivity and the behavior of complex quantum systems has provided empirical examples of emergent properties. [7] In biology, the study of complex biological networks and the dynamics of ecosystems has further illustrated how emergent properties play a crucial role in natural systems. [8]

The resurgence of interest in artificial intelligence and machine learning has also contributed to contemporary discussions on emergentism. Researchers in these fields are particularly interested in how intelligent behavior and consciousness might emerge from artificial systems, providing new perspectives and challenges for emergentist theories. [9]

Forms

Emergentism can be compatible with physicalism, [10] the theory that the universe is composed exclusively of physical entities, and in particular with the evidence relating changes in the brain with changes in mental functioning.

Some varieties of emergentism are not specifically concerned with the mind–body problem but constitute a theory of the nature of the universe comparable to pantheism. [11] They suggest a hierarchical or layered view of the whole of nature, with the layers arranged in terms of increasing complexity with each requiring its own special science.

Core principles of emergentism

Emergentism is underpinned by several core principles that define its theoretical framework and distinguish it from other philosophical doctrines such as reductionism and holism.

Definition and nature of emergence

Emergence refers to the arising of novel and coherent structures, patterns, and properties during the process of self-organization in complex systems. These emergent properties are not predictable from the properties of the individual components alone. Emergent properties are seen as a result of the interactions and relationships between the components of a system, which produce new behaviors and characteristics that are not present in the isolated parts. This concept is crucial in understanding why certain phenomena cannot be fully explained by analyzing their parts independently. [3]

Types of emergence

Emergentism distinguishes between two main types of emergence: weak and strong.

Key characteristics

Emergent properties are characterized by several key features that distinguish them from simple aggregative properties:

Theoretical foundations

The theoretical foundations of emergentism are deeply intertwined with various philosophical theories and debates, particularly those concerning the nature of reality, the relationship between parts and wholes, and the nature of causality. Emergentism contrasts sharply with reductionism, which attempts to explain complex phenomena entirely in terms of their simpler components, and holism, which emphasizes the whole without necessarily addressing the emergence of properties. [3]

Relationship to other philosophical theories

Emergentism stands in contrast to reductionism, which holds that all phenomena can be fully explained by their constituent parts. Reductionists argue that understanding the basic building blocks of a system provides a complete understanding of the system itself. However, emergentists contend that this approach overlooks the novel properties that arise from complex interactions within a system. For example, while the properties of water can be traced back to hydrogen and oxygen atoms, the wetness of water cannot be fully explained by examining these atoms in isolation. [4]

Holism, on the other hand, emphasizes the significance of the whole system, suggesting that the properties of the whole are more important than the properties of the parts. Emergentism agrees with holism to some extent but differs in that it specifically focuses on how new properties emerge from the interactions within the system. Holism often overlooks the dynamic processes that lead to the emergence of new properties, which are central to emergentism. [3]

Relationship to vitalism

Emmeche et al. (1998) state that "there is a very important difference between the vitalists and the emergentists: the vitalist's creative forces were relevant only in organic substances, not in inorganic matter. Emergence hence is creation of new properties regardless of the substance involved." "The assumption of an extra-physical vitalis (vital force, entelechy, élan vital, etc.), as formulated in most forms (old or new) of vitalism, is usually without any genuine explanatory power. It has served altogether too often as an intellectual tranquilizer or verbal sedative—stifling scientific inquiry rather than encouraging it to proceed in new directions." [13]

Ontological vs. epistemological emergentism

Emergentism can be divided into ontological and epistemological categories, each addressing different aspects of emergent properties.

Causality in emergentism

A crucial aspect of emergentism is its treatment of causality, particularly the concept of downward causation. Downward causation refers to the influence that higher-level properties can exert on the behavior of lower-level entities within a system. This idea challenges the traditional view that causation only works from the bottom up, from simpler to more complex levels. [4]

Scientific perspectives

Emergentism finds its scientific support and application across various disciplines, illustrating how complex behaviors and properties arise from simpler interactions. These scientific perspectives demonstrate the practical significance of emergentist theories.

Emergence in physics

In physics, emergence is observed in phenomena where macroscopic properties arise from the interactions of microscopic components. A classic example is superconductivity, where the collective behavior of electrons in certain materials leads to the phenomenon of zero electrical resistance. This emergent property cannot be fully explained by the properties of individual electrons alone, but rather by their interactions within the lattice structure of the material. [7]

Another significant example is quantum entanglement, where particles become interconnected in such a way that the state of one particle instantly influences the state of another, regardless of the distance between them. This non-local property emerges from the quantum interactions and cannot be predicted merely by understanding the individual particles separately. Such emergent properties challenge classical notions of locality and causality, showcasing the profound implications of emergentism in modern physics. [3]

In thermodynamics, emergent behaviors are observed in non-equilibrium systems where patterns and structures spontaneously form. For instance, Bénard cells — a phenomenon where heated fluid forms hexagonal convection cells — arise from thermal gradients and fluid dynamics. This self-organization is an emergent property of the system, highlighting how macro-level order can emerge from micro-level interactions. [4]

Emergence in biology

Emergent phenomena are prevalent in biology, particularly in the study of life and evolutionary processes. One of the most fundamental examples is the emergence of life from non-living chemical compounds. This process, often studied through the lens of abiogenesis, involves complex chemical reactions that lead to self-replicating molecules and eventually living organisms. The properties of life — such as metabolism, growth, and reproduction — emerge from these molecular interactions and cannot be fully understood by examining individual molecules in isolation. [15]

In evolutionary biology, the diversity of life forms arises from genetic mutations, natural selection, and environmental interactions. Complex traits such as the eye or the brain emerge over time through evolutionary processes. These traits exhibit novel properties that are not predictable from the genetic components alone but result from the dynamic interplay between genes and the environment. [3]

Systems biology further illustrates emergent properties in biological networks. For example, metabolic networks where enzymes and substrates interact exhibit emergent behaviors like robustness and adaptability. These properties are crucial for the survival of organisms in changing environments and arise from the complex interconnections within the network. [4]

Emergence in cognitive science

In cognitive science, emergentism plays a crucial role in understanding consciousness and cognitive processes. Consciousness is often cited as a paradigmatic example of an emergent property. While neural processes in the brain involve electrochemical interactions among neurons, the subjective experience of consciousness arises from these processes in a way that is not directly reducible to them. This emergence of conscious experience from neural substrates is a central topic in the philosophy of mind and cognitive science. [16]

Artificial intelligence (AI) and machine learning provide contemporary examples of emergent behavior in artificial systems. Complex algorithms and neural networks can learn, adapt, and exhibit intelligent behavior that is not explicitly programmed. For instance, deep learning models can recognize patterns and make decisions based on vast amounts of data, demonstrating emergent intelligence from simpler computational rules. This emergent behavior in AI systems reflects the principles of emergentism, where higher-level functions arise from the interaction of lower-level components. [9]

Emergentism and language

Emergentism and language are intricately connected through the concept that linguistic properties and structures arise from simpler interactions among cognitive, communicative and social processes. This perspective provides a dynamic view of language development, structure, and evolution, emphasizing the role of interaction and adaptation over innate or static principles. This connection can be explored from several angles:

Linguistic emergence

  • Language development: Emergentism posits that language structures and rules emerge from the interaction of simpler neural and cognitive processes rather than being innate or pre-programmed. This idea contrasts with Noam Chomsky's theory of Universal Grammar, which suggests that the ability to acquire language is hard-wired into the brain. Emergentists argue that language arises from general cognitive capabilities such as pattern recognition and memory interacting with environmental input. [3]
  • Syntax and grammar: Syntax and grammatical rules are seen as emergent properties resulting from the usage patterns of speakers within a language community. As individuals communicate, certain patterns become regularized and form the basis of syntactic rules. These rules are not explicitly taught but emerge naturally from the communicative practices of the community. [4]
  • Connectionist models: In computational linguistics, connectionist or neural network models provide a framework for understanding how language properties can emerge from simpler processes. These models simulate how neural connections in the brain can give rise to complex behaviors like language comprehension and production through learning and interaction. For instance, a neural network might learn to generate grammatically correct sentences by being exposed to large datasets of language, demonstrating emergent properties from the training data. [3]
  • Language evolution: From a sociolinguistic perspective, the evolution of language itself can be viewed through an emergentist lens. Languages change and develop new properties over time as speakers interact, adapt, and innovate. These changes are emergent phenomena resulting from social interaction, cultural exchange, and cognitive adaptation. [4]

Pragmatics and Semantics

  • Pragmatics and semantics: Emergentism also applies to the way meaning (semantics) and context (pragmatics) are derived in language. Meaning is not fixed but emerges from the use of words in specific contexts. Pragmatic rules such as implicatures and speech acts arise from the conventions and expectations of communication within a community. These rules are not pre-determined but develop dynamically as speakers interact. [3]
  • Child language development: In the context of language acquisition, emergentism suggests that children learn language through interaction with their environment and the gradual build-up of linguistic structures. Children are exposed to language data and through cognitive processes such as pattern recognition and hypothesis testing develop an understanding of linguistic rules. This process is emergent because it arises from the interaction of the child's cognitive capabilities with the linguistic input they receive. [3]

Literary emergentism

Literary emergentism is a trend in literary theory. It arises as a reaction against traditional interpretive approaches – hermeneutics, structuralism, semiotics, etc., accusing them of analytical reductionism and lack of hierarchy. Literary emergentism claims to describe the emergence of a text as contemplative logic consisting of seven degrees, similar to the epistemological doctrine of Rudolf Steiner in his Philosophy of Freedom. [17] There are also references to Terrence Deacon, author of the theory of Incomplete nature, according to whom the emergent perspective is metaphysical, whereas the human consciousness emerges as an incessant creation of something from nothing. [18] According to Dimitar Kalev, in all modern literary-theoretical discourses, there is an epistemological "gap" present between the sensory-imagery phenomena of reading and their proto-phenomena from the text. [19] Therefore, in any attempt at literary reconstructions, certain "destruction" is reached, which, from an epistemological point of view, is a designation of the existing transcendence as some "interruption" of the divine "top-down". The emergentist approach does not interpret the text but rather reconstructs its becoming, identifying itself with the contemplative logic of the writer, claiming that it possesses a being of ideal objectivity and universal accessibility.

Criticisms and debates

Emergentism, like any philosophical theory, has been subject to various criticisms and debates. These discussions revolve around the validity of emergent properties, the explanatory power of emergentism, and its implications for other areas of philosophy and science.

Main criticisms

Responses to criticisms

These criticisms and debates highlight the dynamic and evolving nature of emergentism, reflecting its impact and relevance across various fields of inquiry. By addressing these challenges, proponents of emergentism continue to refine and strengthen their theoretical framework.

Applications of emergentism

Emergentism finds applications across various scientific and philosophical domains, illustrating how complex behaviors and properties can arise from simpler interactions. These applications underscore the practical relevance of emergentist theories and their impact on understanding complex systems.

In science

In philosophy

Interdisciplinary applications

These applications of emergentism illustrate its broad relevance and utility in explaining and understanding complex systems across various domains, highlighting the interdisciplinary impact of emergentist theories.

Notable Philosophers and Scientists in Emergentism

Emergentism has been significantly shaped and debated by numerous philosophers and scientists over the years. Here are notable figures who have contributed to the development and discourse of emergentism, providing a rich tapestry of ideas and empirical evidence that support the theory's application across various domains:

Contribution: One of the earliest thinkers to suggest that the whole could possess properties that its individual parts did not. This idea laid the foundational groundwork for emergentist thought by emphasizing that certain phenomena cannot be fully explained by their individual components alone. Major Work: Metaphysics [22]

Contribution: Formally introduced the term "emergence" in the 19th century. He distinguished between "resultant" and "emergent" properties where emergent properties could not be predicted from the properties of the parts, a critical distinction in emergentist theory. Major Work: Problems of Life and Mind [23]

Contribution: Early proponent of emergentism in social and political contexts. Mill's work emphasized the importance of understanding social phenomena as more than the sum of individual actions, highlighting the emergent properties in societal systems. Major Work: A System of Logic [24]

Contribution: In his 1925 book The Mind and Its Place in Nature, Broad argued that mental states were emergent properties of brain processes. He developed a comprehensive philosophical framework for emergentism, advocating for the irreducibility of higher-level properties. Major Work: The Mind and Its Place in Nature [5]

Contribution: In his work Space, Time, and Deity, Alexander suggested that emergent qualities like consciousness and life could not be fully explained by underlying physical processes alone, emphasizing the novelty and unpredictability of emergent properties. Major Work: Space, Time, and Deity [6]

Contribution: A prominent critic and commentator on emergentism. Kim extensively analyzed the limits and scope of emergent properties, particularly in the context of mental causation and the philosophy of mind, questioning the coherence and causal efficacy of emergent properties. Major Work: Mind in a Physical World [14]

Contribution: Advanced the idea that emergent properties are irreducible and possess their own causal powers. Polanyi's work in chemistry and philosophy of science provided empirical and theoretical support for emergentist concepts, especially in complex systems and hierarchical structures. Major Work: Personal Knowledge [25]

Contribution: Nobel laureate in physics, Anderson's work on condensed matter physics and the theory of superconductivity provided significant empirical examples of emergent phenomena. His famous essay "More is Different" argued for the necessity of emergentist explanations in physics. Major Work: More is Different [26]

Contribution: A theoretical biologist whose work in complex systems and self-organization highlighted the role of emergence in biological evolution and the origin of life. Kauffman emphasized the unpredictability and novelty of emergent biological properties. Major Work: The Origins of Order [8]

Contribution: Neuropsychologist and Nobel laureate, Sperry's split-brain research contributed to the understanding of consciousness as an emergent property of brain processes. He argued that emergent mental properties have causal efficacy, influencing the lower-level neural processes. Major Work: Science and Moral Priority [27]

Contribution: Anthropologist and neuroscientist, Deacon's work on the evolution of language and human cognition explored how emergent properties arise from neural and social interactions. His book Incomplete Nature delves into the emergentist explanation of life and mind. Major Work: Incomplete Nature: How Mind Emerged from Matter [28]

Contribution: An author and theorist whose popular science books, such as Emergence: The Connected Lives of Ants, Brains, Cities, and Software, have brought the concept of emergentism to a broader audience. Johnson illustrates how complex systems in nature and society exhibit emergent properties. Major Work: Emergence: The Connected Lives of Ants, Brains, Cities, and Software [9]

Future research

Emergentism offers a valuable framework for understanding complex systems and phenomena that cannot be fully explained by their constituent parts. Its interdisciplinary nature and broad applicability make it a significant area of study in both philosophy and science. Future research will continue to explore the implications and potential of emergent properties, contributing to our understanding of the natural world.

Notes

  1. 1 2 , O'Connor, Timothy and Wong, Hong Yu (eds.), "Emergent Properties", The Stanford Encyclopedia of Philosophy (Summer 2015 Edition), Edward N. Zalta (ed.)
  2. Kistler, Max (2006). "New Perspectives on Reduction and Emergence in Physics, Biology and Psychology". Synthese. 151 (3): 311–312. doi:10.1007/s11229-006-9014-3. ISSN   0039-7857. JSTOR   20118808. S2CID   36301964 . Retrieved 3 September 2021.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 O'Connor 2019.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Van Gulick.
  5. 1 2 Broad 1925, p. 56.
  6. 1 2 Alexander 1920, p. 213.
  7. 1 2 3 4 5 Anderson 1972.
  8. 1 2 Kauffman 1993, p. 71.
  9. 1 2 3 4 Johnson 2001.
  10. Being Emergence vs. Pattern Emergence: Complexity, Control, and Goal-Directedness in Biological Systems, Jason Winning & William Bechtel In Sophie Gibb, Robin Hendry & Tom Lancaster (eds.), The Routledge Handbook of Emergence. London: pp. 134-144 (2019)
  11. Franklin, James (2019). "Emergentism as an option in the philosophy of religion: Between materialist atheism and pantheism" (PDF). Suri: Journal of the Philosophical Association of the Philippines. 8 (2): 1–22. Retrieved 30 June 2021.
  12. Broad 1925, p. 64.
  13. Dictionary of the History of Ideas Archived 2011-05-11 at the Wayback Machine
  14. 1 2 Kim 1998, p. 97.
  15. Kauffman 1993, p. 88.
  16. Kim 1998, p. 102.
  17. Steiner, Rudolf. (2010). Die Philosophie der Freiheit. Rudolf Steiner online archiv. 4. Auflage., The philosophy of freedom. Rudolf Steiner’s online archive. (4th edition.), German.
  18. Deacon, Terrence W. (2003). The hierarchic logic of emergence: Untangling the interdependence of evolution and self-organization. In B. Weber and D. Depen (Eds.), Evolution and learning: The Baldwin effect reconsidered (pp. 273–308). Cambridge, Mass.: MIT Press.
  19. Kalev D. Literary emergentism. Available at: https://www.academia.edu/121134447/LITERARY_EMERGENTISM
  20. Kim 1998, p. 112.
  21. Kim 1998, p. 119.
  22. Aristotle, Metaphysics (Aristotle) , Book VIII (Eta) 1045a 8–10: "... the totality is not, as it were, a mere heap, but the whole is something besides the parts ...", i.e., the whole is other than the sum of the parts.
  23. Lewes 1875, p. 78.
  24. Mill 1843, p. 152.
  25. Polanyi 1958, p. 202.
  26. Anderson 1972, p. 393.
  27. Sperry 1983, p. 145.
  28. Deacon 2012, p. 189.

Related Research Articles

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of cognitive processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision-making to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

<span class="mw-page-title-main">Emergence</span> Unpredictable phenomenon in complex systems

In philosophy, systems theory, science, and art, emergence occurs when a complex entity has properties or behaviors that its parts do not have on their own, and emerge only when they interact in a wider whole.

<span class="mw-page-title-main">Reductionism</span> Philosophical view explaining systems in terms of smaller parts

Reductionism is any of several related philosophical ideas regarding the associations between phenomena which can be described in terms of simpler or more fundamental phenomena. It is also described as an intellectual and philosophical position that interprets a complex system as the sum of its parts.

<span class="mw-page-title-main">Mind–body dualism</span> Philosophical theory

In the philosophy of mind, mind–body dualism denotes either the view that mental phenomena are non-physical, or that the mind and body are distinct and separable. Thus, it encompasses a set of views about the relationship between mind and matter, as well as between subject and object, and is contrasted with other positions, such as physicalism and enactivism, in the mind–body problem.

Greedy reductionism, identified by Daniel Dennett, in his 1995 book Darwin's Dangerous Idea, is a kind of erroneous reductionism. Whereas "good" reductionism means explaining a thing in terms of what it reduces to, greedy reductionism occurs when "in their eagerness for a bargain, in their zeal to explain too much too fast, scientists and philosophers ... underestimate the complexities, trying to skip whole layers or levels of theory in their rush to fasten everything securely and neatly to the foundation". Using the terminology of "cranes" and "skyhooks" built up earlier in the chapter, Dennett recapitulates his initial definition of the term in the chapter summary on p. 83: "Good reductionists suppose that all Design can be explained without skyhooks; greedy reductionists suppose it can all be explained without cranes."

Eliminative materialism is a materialist position in the philosophy of mind. It is the idea that the majority of mental states in folk psychology do not exist. Some supporters of eliminativism argue that no coherent neural basis will be found for many everyday psychological concepts such as belief or desire, since they are poorly defined. The argument is that psychological concepts of behavior and experience should be judged by how well they reduce to the biological level. Other versions entail the nonexistence of conscious mental states such as pain and visual perceptions.

In the philosophy of mind, emergentmaterialism is a theory which asserts that the mind is irreducibly existent in some sense. However, the mind does not exist in the sense of being an ontological simple. Further, the study of mental phenomena is independent of other sciences. The theory primarily maintains that the human mind's evolution is a product of material nature and that it cannot exist without material basis.

Developed in his (1999) book, "The Feeling of What Happens", Antonio Damasio's theory of consciousness proposes that consciousness arises from the interactions between the brain, the body, and the environment. According to this theory, consciousness is not a unitary experience, but rather emerges from the dynamic interplay between different brain regions and their corresponding bodily states. Damasio argues that our conscious experiences are influenced by the emotional responses that are generated by our body's interactions with the environment, and that these emotional responses play a crucial role in shaping our conscious experience. This theory emphasizes the importance of the body and its physiological processes in the emergence of consciousness.

<span class="mw-page-title-main">Hard problem of consciousness</span> Philosophical concept

In the philosophy of mind, the hard problem of consciousness is to explain why and how humans and other organisms have qualia, phenomenal consciousness, or subjective experience. It is contrasted with the "easy problems" of explaining why and how physical systems give a (healthy) human being the ability to discriminate, to integrate information, and to perform behavioral functions such as watching, listening, speaking, and so forth. The easy problems are amenable to functional explanation—that is, explanations that are mechanistic or behavioral—since each physical system can be explained purely by reference to the "structure and dynamics" that underpin the phenomenon.

<span class="mw-page-title-main">Terrence Deacon</span> American linguist

Terrence William Deacon is an American neuroanthropologist. He taught at Harvard for eight years, relocated to Boston University in 1992, and is currently Professor of Anthropology and member of the Cognitive Science Faculty at the University of California, Berkeley.

<span class="mw-page-title-main">Generative science</span> Study of how complex behaviour can be generated by deterministic and finite rules and parameters

Generative science is an area of research that explores the natural world and its complex behaviours. It explores ways "to generate apparently unanticipated and infinite behaviour based on deterministic and finite rules and parameters reproducing or resembling the behavior of natural and social phenomena". By modelling such interactions, it can suggest that properties exist in the system that had not been noticed in the real world situation. An example field of study is how unintended consequences arise in social processes.

Holism in science, holistic science, or methodological holism is an approach to research that emphasizes the study of complex systems. Systems are approached as coherent wholes whose component parts are best understood in context and in relation to both each other and to the whole. Holism typically stands in contrast with reductionism, which describes systems by dividing them into smaller components in order to understand them through their elemental properties.

Emergent evolution is the hypothesis that, in the course of evolution, some entirely new properties, such as mind and consciousness, appear at certain critical points, usually because of an unpredictable rearrangement of the already existing entities. The term was originated by the psychologist C. Lloyd Morgan in 1922 in his Gifford Lectures at St. Andrews, which would later be published as the 1923 book Emergent Evolution.

Antireductionism is the position in science and metaphysics that stands in contrast to reductionism (anti-holism) by advocating that not all properties of a system can be explained in terms of its constituent parts and their interactions.

The philosophy of mind is a branch of philosophy that deals with the nature of the mind and its relation to the body and the external world.

<span class="mw-page-title-main">Mind–body problem</span> Open question in philosophy of how abstract minds interact with physical bodies

The mind–body problem is a philosophical problem concerning the relationship between thought and consciousness in the human mind and body.

The Competition Model is a psycholinguistic theory of language acquisition and sentence processing, developed by Elizabeth Bates and Brian MacWhinney (1982). The claim in MacWhinney, Bates, and Kliegl (1984) is that "the forms of natural languages are created, governed, constrained, acquired, and used in the service of communicative functions." Furthermore, the model holds that processing is based on an online competition between these communicative functions or motives. The model focuses on competition during sentence processing, crosslinguistic competition in bilingualism, and the role of competition in language acquisition. It is an emergentist theory of language acquisition and processing, serving as an alternative to strict innatist and empiricist theories. According to the Competition Model, patterns in language arise from Darwinian competition and selection on a variety of time/process scales including phylogenetic, ontogenetic, social diffusion, and synchronic scales.

Secondary consciousness is an individual's accessibility to their history and plans. The ability allows its possessors to go beyond the limits of the remembered present of primary consciousness. Primary consciousness can be defined as simple awareness that includes perception and emotion. As such, it is ascribed to most animals. By contrast, secondary consciousness depends on and includes such features as self-reflective awareness, abstract thinking, volition and metacognition. The term was coined by Gerald Edelman.

<span class="mw-page-title-main">Artificial life</span> Field of study

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American computer scientist, in 1986. In 1987, Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

References

Further reading

See also