Causal fermion systems

Last updated

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. [1] [2] Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. [3] [4] Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. [5] [6] In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale (like a spacetime lattice or other discrete or continuous structures on the Planck scale). As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

Contents

Causal fermion systems were introduced by Felix Finster and collaborators.

Motivation and physical concept

The physical starting point is the fact that the Dirac equation in Minkowski space has solutions of negative energy which are usually associated to the Dirac sea. Taking the concept seriously that the states of the Dirac sea form an integral part of the physical system, one finds that many structures (like the causal and metric structures as well as the bosonic fields) can be recovered from the wave functions of the sea states. This leads to the idea that the wave functions of all occupied states (including the sea states) should be regarded as the basic physical objects, and that all structures in spacetime arise as a result of the collective interaction of the sea states with each other and with the additional particles and "holes" in the sea. Implementing this picture mathematically leads to the framework of causal fermion systems.

More precisely, the correspondence between the above physical situation and the mathematical framework is obtained as follows. All occupied states span a Hilbert space of wave functions in Minkowski space . The observable information on the distribution of the wave functions in spacetime is encoded in the local correlation operators which in an orthonormal basis have the matrix representation

(where is the adjoint spinor). In order to make the wave functions into the basic physical objects, one considers the set as a set of linear operators on an abstract Hilbert space. The structures of Minkowski space are all disregarded, except for the volume measure , which is transformed to a corresponding measure on the linear operators (the "universal measure"). The resulting structures, namely a Hilbert space together with a measure on the linear operators thereon, are the basic ingredients of a causal fermion system.

The above construction can also be carried out in more general spacetimes. Moreover, taking the abstract definition as the starting point, causal fermion systems allow for the description of generalized "quantum spacetimes." The physical picture is that one causal fermion system describes a spacetime together with all structures and objects therein (like the causal and the metric structures, wave functions and quantum fields). In order to single out the physically admissible causal fermion systems, one must formulate physical equations. In analogy to the Lagrangian formulation of classical field theory, the physical equations for causal fermion systems are formulated via a variational principle, the so-called causal action principle. Since one works with different basic objects, the causal action principle has a novel mathematical structure where one minimizes a positive action under variations of the universal measure. The connection to conventional physical equations is obtained in a certain limiting case (the continuum limit) in which the interaction can be described effectively by gauge fields coupled to particles and antiparticles, whereas the Dirac sea is no longer apparent.

General mathematical setting

In this section the mathematical framework of causal fermion systems is introduced.

Definition

A causal fermion system of spin dimension is a triple where

The measure is referred to as the universal measure.

As will be outlined below, this definition is rich enough to encode analogs of the mathematical structures needed to formulate physical theories. In particular, a causal fermion system gives rise to a spacetime together with additional structures that generalize objects like spinors, the metric and curvature. Moreover, it comprises quantum objects like wave functions and a fermionic Fock state. [7]

The causal action principle

Inspired by the Langrangian formulation of classical field theory, the dynamics on a causal fermion system is described by a variational principle defined as follows.

Given a Hilbert space and the spin dimension , the set is defined as above. Then for any , the product is an operator of rank at most . It is not necessarily self-adjoint because in general . We denote the non-trivial eigenvalues of the operator (counting algebraic multiplicities) by

Moreover, the spectral weight is defined by

The Lagrangian is introduced by

The causal action is defined by

The causal action principle is to minimize under variations of within the class of (positive) Borel measures under the following constraints:

Here on one considers the topology induced by the -norm on the bounded linear operators on .

The constraints prevent trivial minimizers and ensure existence, provided that is finite-dimensional. [8] This variational principle also makes sense in the case that the total volume is infinite if one considers variations of bounded variation with .

Inherent structures

In contemporary physical theories, the word spacetime refers to a Lorentzian manifold . This means that spacetime is a set of points enriched by topological and geometric structures. In the context of causal fermion systems, spacetime does not need to have a manifold structure. Instead, spacetime is a set of operators on a Hilbert space (a subset of ). This implies additional inherent structures that correspond to and generalize usual objects on a spacetime manifold.

For a causal fermion system , we define spacetime as the support of the universal measure,

With the topology induced by , spacetime is a topological space.

Causal structure

For , we denote the non-trivial eigenvalues of the operator (counting algebraic multiplicities) by . The points and are defined to be spacelike separated if all the have the same absolute value. They are timelike separated if the do not all have the same absolute value and are all real. In all other cases, the points and are lightlike separated.

This notion of causality fits together with the "causality" of the above causal action in the sense that if two spacetime points are space-like separated, then the Lagrangian vanishes. This corresponds to the physical notion of causality that spatially separated spacetime points do not interact. This causal structure is the reason for the notion "causal" in causal fermion system and causal action.

Let denote the orthogonal projection on the subspace . Then the sign of the functional

distinguishes the future from the past. In contrast to the structure of a partially ordered set, the relation "lies in the future of" is in general not transitive. But it is transitive on the macroscopic scale in typical examples. [5] [6]

Spinors and wave functions

For every the spin space is defined by ; it is a subspace of of dimension at most . The spin scalar product defined by

is an indefinite inner product on of signature with .

A wave function is a mapping

On wave functions for which the norm defined by

is finite (where is the absolute value of the symmetric operator ), one can define the inner product

Together with the topology induced by the norm , one obtains a Krein space .

To any vector we can associate the wave function

(where is again the orthogonal projection to the spin space). This gives rise to a distinguished family of wave functions, referred to as the wave functions of the occupied states.

The fermionic projector

The kernel of the fermionic projector is defined by

(where is again the orthogonal projection on the spin space, and denotes the restriction to ). The fermionic projector is the operator

which has the dense domain of definition given by all vectors satisfying the conditions

As a consequence of the causal action principle, the kernel of the fermionic projector has additional normalization properties [9] which justify the name projector.

Connection and curvature

Being an operator from one spin space to another, the kernel of the fermionic projector gives relations between different spacetime points. This fact can be used to introduce a spin connection

The basic idea is to take a polar decomposition of . The construction becomes more involved by the fact that the spin connection should induce a corresponding metric connection

where the tangent space is a specific subspace of the linear operators on endowed with a Lorentzian metric. The spin curvature is defined as the holonomy of the spin connection,

Similarly, the metric connection gives rise to metric curvature. These geometric structures give rise to a proposal for a quantum geometry. [5]

The Euler–Lagrange equations and the linearized field equations

A minimizer of the causal action satisfies corresponding Euler–Lagrange equations. [10] They state that the function defined by

(with two Lagrange parameters and ) vanishes and is minimal on the support of ,

For the analysis, it is convenient to introduce jets consisting of a real-valued function on and a vector field  on along , and to denote the combination of multiplication and directional derivative by . Then the Euler–Lagrange equations imply that the weak Euler–Lagrange equations

hold for any test jet .

Families of solutions of the Euler–Lagrange equations are generated infinitesimally by a jet which satisfies the linearized field equations

to be satisfied for all test jets , where the Laplacian is defined by  

The Euler–Lagrange equations describe the dynamics of the causal fermion system, whereas small perturbations of the system are described by the linearized field equations.

Conserved surface layer integrals

In the setting of causal fermion systems, spatial integrals are expressed by so-called surface layer integrals. [9] [10] [11] In general terms, a surface layer integral is a double integral of the form

where one variable is integrated over a subset , and the other variable is integrated over the complement of . It is possible to express the usual conservation laws for charge, energy, ... in terms of surface layer integrals. The corresponding conservation laws are a consequence of the Euler–Lagrange equations of the causal action principle and the linearized field equations. For the applications, the most important surface layer integrals are the current integral, the symplectic form, the surface layer inner product and the nonlinear surface layer integral.

Bosonic Fock space dynamics

Based on the conservation laws for the above surface layer integrals, the dynamics of a causal fermion system as described by the Euler–Lagrange equations corresponding to the causal action principle can be rewritten as a linear, norm-preserving dynamics on the bosonic Fock space built up of solutions of the linearized field equations. [4] In the so-called holomorphic approximation, the time evolution respects the complex structure, giving rise to a unitary time evolution on the bosonic Fock space.

A fermionic Fock state

If has finite dimension , choosing an orthonormal basis of and taking the wedge product of the corresponding wave functions

gives a state of an -particle fermionic Fock space. Due to the total anti-symmetrization, this state depends on the choice of the basis of only by a phase factor. [12] This correspondence explains why the vectors in the particle space are to be interpreted as fermions. It also motivates the name causal fermion system.

Underlying physical principles

Causal fermion systems incorporate several physical principles in a specific way:

Then a wave function can be represented with component functions,
The freedom of choosing the bases independently at every spacetime point corresponds to local unitary transformations of the wave functions,
These transformations have the interpretation as local gauge transformations. The gauge group is determined to be the isometry group of the spin scalar product. The causal action is gauge invariant in the sense that it does not depend on the choice of spinor bases.

Limiting cases

Causal fermion systems have mathematically sound limiting cases that give a connection to conventional physical structures.

Lorentzian spin geometry of globally hyperbolic spacetimes

Starting on any globally hyperbolic Lorentzian spin manifold with spinor bundle , one gets into the framework of causal fermion systems by choosing as a subspace of the solution space of the Dirac equation. Defining the so-called local correlation operator for by

(where is the inner product on the fibre ) and introducing the universal measure as the push-forward of the volume measure on ,

one obtains a causal fermion system. For the local correlation operators to be well-defined, must consist of continuous sections, typically making it necessary to introduce a regularization on the microscopic scale . In the limit , all the intrinsic structures on the causal fermion system (like the causal structure, connection and curvature) go over to the corresponding structures on the Lorentzian spin manifold. [5] Thus the geometry of spacetime is encoded completely in the corresponding causal fermion systems.

Quantum mechanics and classical field equations

The Euler–Lagrange equations corresponding to the causal action principle have a well-defined limit if the spacetimes of the causal fermion systems go over to Minkowski space. More specifically, one considers a sequence of causal fermion systems (for example with finite-dimensional in order to ensure the existence of the fermionic Fock state as well as of minimizers of the causal action), such that the corresponding wave functions go over to a configuration of interacting Dirac seas involving additional particle states or "holes" in the seas. This procedure, referred to as the continuum limit, gives effective equations having the structure of the Dirac equation coupled to classical field equations. For example, for a simplified model involving three elementary fermionic particles in spin dimension two, one obtains an interaction via a classical axial gauge field [2] described by the coupled Dirac– and Yang–Mills equations

Taking the non-relativistic limit of the Dirac equation, one obtains the Pauli equation or the Schrödinger equation, giving the correspondence to quantum mechanics. Here and depend on the regularization and determine the coupling constant as well as the rest mass.

Likewise, for a system involving neutrinos in spin dimension 4, one gets effectively a massive gauge field coupled to the left-handed component of the Dirac spinors. [2] The fermion configuration of the standard model can be described in spin dimension 16. [1]

The Einstein field equations

For the just-mentioned system involving neutrinos, [2] the continuum limit also yields the Einstein field equations coupled to the Dirac spinors,

up to corrections of higher order in the curvature tensor. Here the cosmological constant is undetermined, and denotes the energy-momentum tensor of the spinors and the gauge field. The gravitation constant depends on the regularization length.

Quantum field theory in Minkowski space

Starting from the coupled system of equations obtained in the continuum limit and expanding in powers of the coupling constant, one obtains integrals which correspond to Feynman diagrams on the tree level. Fermionic loop diagrams arise due to the interaction with the sea states, whereas bosonic loop diagrams appear when taking averages over the microscopic (in generally non-smooth) spacetime structure of a causal fermion system (so-called microscopic mixing). [3] The detailed analysis and comparison with standard quantum field theory is work in progress. [4]

Related Research Articles

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:

  1. when the preparation of the systems lead to numerous pure states in the ensemble, and thus one must deal with the statistics of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment. In this case, the density matrix of an entangled system differs from that of an ensemble of pure states that, combined, would give the same statistical results upon measurement.

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

In physics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions in a four-dimensional flat spacetime. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields.

In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action, of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field or connection.

The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.

Higher-dimensional supergravity is the supersymmetric generalization of general relativity in higher dimensions. Supergravity can be formulated in any number of dimensions up to eleven. This article focuses upon supergravity (SUGRA) in greater than four dimensions.

<span class="mw-page-title-main">Nonlinear Dirac equation</span> Dirac equation for self-interacting fermions

In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self-interacting electrons.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

In supersymmetry, 4D supergravity is the theory of supergravity in four dimensions with a single supercharge. It contains exactly one supergravity multiplet, consisting of a graviton and a gravitino, but can also have an arbitrary number of chiral and vector supermultiplets, with supersymmetry imposing stringent constraints on how these can interact. The theory is primarily determined by three functions, those being the Kähler potential, the superpotential, and the gauge kinetic matrix. Many of its properties are strongly linked to the geometry associated to the scalar fields in the chiral multiplets. After the simplest form of this supergravity was first discovered, a theory involving only the supergravity multiplet, the following years saw an effort to incorporate different matter multiplets, with the general action being derived in 1982 by Eugène Cremmer, Sergio Ferrara, Luciano Girardello, and Antonie Van Proeyen.

In supersymmetry, eleven-dimensional supergravity is the theory of supergravity in the highest number of dimensions allowed for a supersymmetric theory. It contains a graviton, a gravitino, and a 3-form gauge field, with their interactions uniquely fixed by supersymmetry. Discovered in 1978 by Eugène Cremmer, Bernard Julia, and Joël Scherk, it quickly became a popular candidate for a theory of everything during the 1980s. However, interest in it soon faded due to numerous difficulties that arise when trying to construct physically realistic models. It came back to prominence in the mid-1990s when it was found to be the low energy limit of M-theory, making it crucial for understanding various aspects of string theory.

In supersymmetry, type IIA supergravity is the unique supergravity in ten dimensions with two supercharges of opposite chirality. It was first constructed in 1984 by a dimensional reduction of eleven-dimensional supergravity on a circle. The other supergravities in ten dimensions are type IIB supergravity, which has two supercharges of the same chirality, and type I supergravity, which has a single supercharge. In 1986 a deformation of the theory was discovered which gives mass to one of the fields and is known as massive type IIA supergravity. Type IIA supergravity plays a very important role in string theory as it is the low-energy limit of type IIA string theory.

References

  1. 1 2 Finster, Felix (2006). The Principle of the Fermionic Projector. Providence, R.I: American Mathematical Society. ISBN   978-0-8218-3974-4. OCLC   61211466. Chapters 1-4 Chapters 5-8 Appendices
  2. 1 2 3 4 Finster, Felix (2016). The Continuum Limit of Causal Fermion Systems. Fundamental Theories of Physics. Vol. 186. Cham: Springer International Publishing. arXiv: 1605.04742 . doi:10.1007/978-3-319-42067-7. ISBN   978-3-319-42066-0. ISSN   0168-1222. S2CID   119123208.
  3. 1 2 Finster, Felix (2014). "Perturbative quantum field theory in the framework of the fermionic projector". Journal of Mathematical Physics. 55 (4): 042301. arXiv: 1310.4121 . Bibcode:2014JMP....55d2301F. doi:10.1063/1.4871549. ISSN   0022-2488. S2CID   10515274.
  4. 1 2 3 Finster, Felix; Kamran, Niky (2021). "Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles". Pure and Applied Mathematics Quarterly. 17: 55–140. arXiv: 1808.03177 . doi:10.4310/PAMQ.2021.v17.n1.a3. S2CID   119602224.
  5. 1 2 3 4 Finster, Felix; Grotz, Andreas (2012). "A Lorentzian quantum geometry". Advances in Theoretical and Mathematical Physics. 16 (4): 1197–1290. arXiv: 1107.2026 . doi:10.4310/atmp.2012.v16.n4.a3. ISSN   1095-0761. S2CID   54886814.
  6. 1 2 Finster, Felix; Kamran, Niky (2019). "Spinors on singular spaces and the topology of causal fermion systems". Memoirs of the American Mathematical Society. 259 (1251): v+83. arXiv: 1403.7885 . doi:10.1090/memo/1251. ISSN   0065-9266. S2CID   44295203.
  7. Finster, Felix; Grotz, Andreas; Schiefeneder, Daniela (2012). "Causal Fermion Systems: A Quantum Space-Time Emerging From an Action Principle". Quantum Field Theory and Gravity . Basel: Springer Basel. pp.  157–182. arXiv: 1102.2585 . doi:10.1007/978-3-0348-0043-3_9. ISBN   978-3-0348-0042-6. S2CID   39687703.
  8. Finster, Felix (2010). "Causal variational principles on measure spaces". Journal für die reine und angewandte Mathematik. 2010 (646): 141–194. arXiv: 0811.2666 . doi:10.1515/crelle.2010.069. ISSN   0075-4102. S2CID   15462221.
  9. 1 2 Finster, Felix; Kleiner, Johannes (2016). "Noether-like theorems for causal variational principles". Calculus of Variations and Partial Differential Equations. 55 (2): 35. arXiv: 1506.09076 . doi:10.1007/s00526-016-0966-y. ISSN   0944-2669. S2CID   116964958.
  10. 1 2 Finster, Felix; Kleiner, Johannes (2017). "A Hamiltonian formulation of causal variational principles". Calculus of Variations and Partial Differential Equations. 56 (3): 73. arXiv: 1612.07192 . doi:10.1007/s00526-017-1153-5. ISSN   0944-2669. S2CID   8742665.
  11. Finster, Felix; Kleiner, Johannes (2019). "A class of conserved surface layer integrals for causal variational principles". Calculus of Variations and Partial Differential Equations. 58: 38. arXiv: 1801.08715 . doi:10.1007/s00526-018-1469-9. ISSN   0944-2669. S2CID   54692714.
  12. Finster, Felix (2010). "Entanglement and second quantization in the framework of the fermionic projector". Journal of Physics A: Mathematical and Theoretical. 43 (39): 395302. arXiv: 0911.0076 . Bibcode:2010JPhA...43M5302F. doi:10.1088/1751-8113/43/39/395302. ISSN   1751-8113. S2CID   33980400.

Further reading