Quantum invariant

Last updated

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement. [1] [2] [3]

Contents

List of invariants

See also

Related Research Articles

Edward Witten American theoretical physicist

Edward Witten is an American mathematical and theoretical physicist. He is the Charles Simonyi Professor in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, quantum gravity, supersymmetric quantum field theories, and other areas of mathematical physics. Witten's work has also significantly impacted pure mathematics. In 1990, he became the first physicist to be awarded a Fields Medal by the International Mathematical Union, for his 1981 proof of the positive energy theorem in general relativity. He is considered the practical founder of M-theory.

Knot theory Study of mathematical knots

In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself.

The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.

In mathematics, the Chern theorem states that the Euler-Poincaré characteristic of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial of its curvature form.

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

Ruth Lawrence British–Israeli mathematician

Ruth Elke Lawrence-Neimark is a British–Israeli mathematician and an associate professor of mathematics at the Einstein Institute of Mathematics, Hebrew University of Jerusalem, and a researcher in knot theory and algebraic topology. Outside academia, she is best known for having been a child prodigy in mathematics.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic manifold. The GW invariants may be packaged as a homology or cohomology class in an appropriate space, or as the deformed cup product of quantum cohomology. These invariants have been used to distinguish symplectic manifolds that were previously indistinguishable. They also play a crucial role in closed type IIA string theory. They are named after Mikhail Gromov and Edward Witten.

In mathematics, Khovanov homology is an oriented link invariant that arises as the homology of a chain complex. It may be regarded as a categorification of the Jones polynomial.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

In the mathematical theory of knots, a finite type invariant, or Vassiliev invariant, is a knot invariant that can be extended to an invariant of certain singular knots that vanishes on singular knots with m + 1 singularities and does not vanish on some singular knot with 'm' singularities. It is then said to be of type or order m.

The Oswald Veblen Prize in Geometry is an award granted by the American Mathematical Society for notable research in geometry or topology. It was founded in 1961 in memory of Oswald Veblen. The Veblen Prize is now worth US$5000, and is awarded every three years.

Nicolai Reshetikhin Russian mathematician (born 1958)

Nicolai Yuryevich Reshetikhin is a mathematical physicist, currently a professor of mathematics at the University of California, Berkeley and a professor of mathematical physics at the University of Amsterdam. His research is in the fields of low-dimensional topology, representation theory, and quantum groups. His major contributions are in the theory of quantum integrable systems, in representation theory of quantum groups and in quantum topology. He and Vladimir Turaev constructed invariants of 3-manifolds which are expected to describe quantum Chern-Simons field theory introduced by Edward Witten.

The Geometry Festival is an annual mathematics conference held in the United States.

History of knot theory

Knots have been used for basic purposes such as recording information, fastening and tying objects together, for thousands of years. The early, significant stimulus in knot theory would arrive later with Sir William Thomson and his vortex theory of the atom.

In the mathematical theory of knots, the Kontsevich invariant, also known as the Kontsevich integral of an oriented framed link, is a universal Vassiliev invariant in the sense that any coefficient of the Kontsevich invariant is of a finite type, and conversely any finite type invariant can be presented as a linear combination of such coefficients. It was defined by Maxim Kontsevich.

Victor Anatolyevich Vassiliev

Victor Anatolyevich Vassiliev or Vasilyev, is a Soviet and Russian mathematician. He is best known for his discovery of the Vassiliev invariants in knot theory, which subsume many previously discovered polynomial knot invariants such as the Jones polynomial. He also works on singularity theory, topology, computational complexity theory, integral geometry, symplectic geometry, partial differential equations, complex analysis, combinatorics, and Picard–Lefschetz theory.

In the branch of mathematics called knot theory, the volume conjecture is the following open problem that relates quantum invariants of knots to the hyperbolic geometry of knot complements.

Vladimir Georgievich Turaev is a Russian mathematician, specializing in topology.

In the mathematical field of quantum topology, the Reshetikhin–Turaev invariants (RT-invariants) are a family of quantum invariants of framed links. Such invariants of framed links also give rise to invariants of 3-manifolds via the Dehn surgery construction. These invariants were discovered by Nicolai Reshetikhin and Vladimir Turaev in 1991, and were meant to be a mathematical realization of Witten's proposed invariants of links and 3-manifolds using quantum field theory.

References

  1. Reshetikhin, N. & Turaev, V. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Invent. Math. 103 (1): 547. Bibcode:1991InMat.103..547R. doi:10.1007/BF01239527. S2CID   123376541.
  2. Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.
  3. Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012.
  4. Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv: math/0406194 .
  5. Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv: math/0009222 .
  6. "Data" (PDF). hal.archives-ouvertes.fr. 1999. Retrieved 2019-11-04.
  7. "Archived copy" (PDF). knot.kaist.ac.kr. Archived from the original (PDF) on 20 July 2007. Retrieved 13 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  8. "Invariants of 3-manifolds via link polynomials and quantum groups - Springer". doi:10.1007/BF01239527. S2CID   123376541.{{cite journal}}: Cite journal requires |journal= (help)

Further reading